Movatterモバイル変換


[0]ホーム

URL:


はてラボはてな匿名ダイアリー
ようこそ ゲスト さんログインユーザー登録

「多項式」を含む日記RSS

はてなキーワード:多項式とは

次の25件>

2025-10-21

数学の分類はこんな感じか

フェミニズムの分類が多すぎると聞いて

anond:20251020210124

0. 基礎・横断

集合論

公理集合論(ZFC, ZF, GCH, 大きな基数)

記述集合論(Borel階層, Projective階層, 汎加法族)

強制法フォーシング),相対的一致・独立

理論理学

述語論理(完全性定理,コンパクト性)

モデル理論(型空間, o-極小, NIP, ステーブル理論

証明論(序数解析,カット除去,直観主義論理

再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)

圏論

関手自然変換, 極限/余極限

加群圏,アーベル圏,三角圏,派生

トポス論,モナド,アジュンクション

数学基礎論哲学

構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)

1.代数学

群論

組み合わせ群論(表示, 小石定理,自由群)

代数群/リー群表現, Cartan分解,ルート系)

幾何群論ハイパーリック群, Cayleyグラフ

環論

可換環論(イデアル,局所化,次元理論, 完備化)

可換環アルティン環, ヘルシュタイン環, 環上加群

体論・ガロア理論

体拡大, 分解体,代数独立, 有限体

表現

群・リー代数表現(最高ウェイト,カズダン–ルスティグ)

既約表現,調和解析との関連,指標

ホモロジー代数

射影/入射解像度, Ext・Tor,派生関手

K-理論

アルバースカルーア理論, トポロジカルK, 高次K

線形代数

ジョルダン標準形,特異値分解,クリフォード代数

計算代数

Gröbner基底,多項式時間アルゴリズム,計算群論

2. 数論

初等数論(合同, 既約性判定,二次剰余)

代数的数論(代数体, 整環,イデアル類群,局所体)

解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)

p進数論(p進解析, Iwasawa理論, Hodge–Tate)

算術幾何楕円曲線, モジュラー形式,代数多様体の高さ)

超越論(リンマンヴァイエルシュトラス, ベーカー理論

計算数論(楕円曲線法,AKS素数判定, 格子法)

3. 解析

実解析

測度論・ルベーグ積分, 凸解析,幾何的測度論

複素解析

変数リーマン面, 留数, 近似定理

変数(Hartogs現象, 凸性, severalcomplex variables)

関数解析

バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数

調和解析

フーリエ解析,Littlewood–Paley理論, 擬微分作用素

確率解析

マルチンゲール,伊藤積分, SDE,ギルサノフ, 反射原理

実関数論/特殊関数

ベッセル, 超幾何,直交多項式, Rieszポテンシャル

4.微分方程式力学系

常微分方程式(ODE)

安定性,分岐, 正準系,可積分系

偏微分方程式(PDE)

楕円型(正則性,変分法, 最小曲面)

放物型(熱方程式, 最大原理, Harnack)

双曲型(波動, 伝播, 散乱理論

非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)

幾何解析

リッチ流, 平均曲率流,ヤンミルズ,モノポールインスタント

力学系

エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学

ハミルトン力学,KAM理論,トーラス崩壊

5.幾何学・トポロジー

位相幾何

点集合位相,ホモトピーホモロジー, 基本群,スペクトル系列

幾何トポロジー

3次元多様体幾何化, 結び目理論,写像類群)

4次元トポロジー(Donaldson/Seiberg–Witten理論

微分幾何

リーマン幾何(曲率,比較幾何,有界幾何

シンプレクティック幾何(モーメント写像, Floer理論

複素/ケーラー幾何(Calabi–Yau, Hodge理論

代数幾何

スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間

有理幾何(MMP, Fano/一般型,代数曲線/曲面)

離散幾何・凸幾何

多面体, Helly/Carathéodory,幾何極値問題

6.組合せ論

極値組合せ論(Turán型, 正則性補題

ランダムグラフ/確率方法(Erdős–Rényi, nibble法)

加法組合せ論(Freiman, サムセット, Gowersノルム)

グラフ理論

彩色,マッチング,マイナー理論(Robertson–Seymour)

スペクトルグラフ理論,拡張グラフ

組合設計ブロック設計, フィッシャーの不等式)

列・順序・格子(部分順序集合, モビウス反転)

7.確率統計

確率論(純粋

測度確率, 極限定理, Lévy過程, Markov過程, 大偏差

統計

数理統計推定, 検定, 漸近理論,EM/MD/ベイズ

ベイズ統計MCMC, 変分推論, 事前分布理論

多変量解析(主成分, 因子,判別,正則化

ノンパラメトリックカーネル法, スプライン,ブーストラップ

実験計画/サーベイ,因果推論(IV,PS,DiD,SCM

時系列(ARIMA,状態空間, Kalman/粒子フィルタ

確率最適化/学習理論

PAC/VC理論,一般境界,統計学習

バンディット,オンライン学習,サンプル複雑度

8.最適化オペレーションリサーチ(OR)

凸最適化

二次計画, 円錐計画(SOCP,SDP),双対性,KKT

凸最適化

多峰性, 一階/二階法, 低ランク,幾何的解析

離散最適化

整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム

確率的/ロバスト最適化

チャンス制約,分布ロバスト,サンプル平均近似

スケジューリング/在庫/待ち行列

Little法則, 重み付き遅延, M/M/1, Jackson網

ゲーム理論

ナッシュ均衡,進化ゲーム,メカニズムデザイン

9. 数値解析・計算数学科学計算

数値線形代数(反復法,直交化, プリコンディショニング)

常微分方程式の数値解法(Runge–Kutta,構造保存)

PDE数値(有限要素/差分/体積,マルチグリッド

誤差解析・条件数,区間演算,随伴

高性能計算HPC)(並列アルゴリズム,スパー行列

シンボリック計算(CAS,代数的簡約, 決定手続き

10.情報計算暗号(数理情報

情報理論

エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み

暗号理論

公開鍵RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識

計算複雑性

P vsNP,ランダム化・通信・回路複雑性,PCP

アルゴリズム理論

近似・オンライン確率的,幾何アルゴリズム

機械学習の数理

カーネル法, 低次元構造, 最適輸送, 生成モデル理論

11. 数理物理

古典/量子力学の厳密理論

C*代数量子論, 散乱, 量子確率

量子場の数理

くりこみ群,構成的QFT, 共形場理論CFT

統計力学の数理

相転移, くりこみ, Ising/Potts, 大偏差

可積分系

逆散乱法,ソリトン, 量子可積分モデル

理論幾何

鏡映対称性,Gromov–Witten, トポロジカル弦

12.生命科学医学社会科学への応用数学

数理生物学

集団動態,進化ゲーム, 反応拡散,系統樹推定

数理神経科学

スパイキングモデル,ネットワーク同期, 神経場方程式

疫学感染症数理

SIR系,推定制御, 非均質ネットワーク

計量経済金融工学

裁定,確率ボラ,リスク測度, 最適ヘッジ, 高頻度データ

社会ネットワーク科学

拡散, 影響最大化,コミュニティ検出

13.シグナル・画像データ科学

信号処理

時間周波数解析,スパー表現,圧縮センシング

画像処理/幾何処理

変動正則化, PDE法, 最適輸送, 形状解析

データ解析

多様体学習,次元削減, トポロジカルデータ解析(TDA

統計機械学習回帰/分類/生成,正則化, 汎化境界

14.教育歴史方法

数学教育学(カリキュラム設計, 誤概念研究,証明教育

数学史(分野別史,人物研究,原典講読)

計算支援定理証明

形式数学(Lean,Coq, Isabelle), SMT,自動定理証明

科学哲学数学実在論/構成主義,証明発見心理

Permalink |記事への反応(0) | 10:29

このエントリーをはてなブックマークに追加ツイートシェア

2025-09-17

dorawii@執筆依頼募集中

多項式の剰余類には複素数と同じ構造を持つものがあることを学んでた。

実数存在を認める人なら剰余類の存在も認めざるをえないからその剰余類のうちの一つが虚数単位対応する以上は複素数存在も認めざるを得ないという論理はひさびざの納得感ある目からうろこ

数学書未満の啓蒙書も悪くないな。

-----BEGINPGP SIGNEDMESSAGE-----Hash:SHA512https://anond.hatelabo.jp/20250917151447# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaMpR2QAKCRBwMdsubs4+SH/vAP0d0t9uQwLMLRuiHyhHAKvyBCFkINRl6W76PcDQ88fjZAEAw7KsyMKOGnlH06BwvJC6Ed5RFPVe8n/cTcBkQOv5GAA==obPD-----ENDPGP SIGNATURE-----

Permalink |記事への反応(0) | 15:14

このエントリーをはてなブックマークに追加ツイートシェア

2025-08-17

超弦理論について掘り下げる

1) 具体的な舞台設定

2)ホモロジー群の中身を「棚卸し」する

3次元のサイクルの群(3 本立ての「輪ゴム」みたいなもの)に、基底を 4 つ用意する(鏡クインティックでは、周期積分の都合で 4 本の独立成分を見るのが標準的)。

これらに対応して、4つの周期関数(各サイクルに対するホロノミーのようなもの)がある。位置(=モジュライ空間の点)を動かすと、この4成分ベクトル解析接続グルグル混ざる。

世界面の N=2超対称性の側で見えるもの

右左で 2 つずつある超対称荷重は、(c,c) と (a,c) の2つのリング演算ができる「カード束」)を生む。

物理実体タイプ IIB なら (c,c) 側が「複素構造のゆらぎ」を担う質量ゼロスカラー場の多重体になり、タイプ IIA なら (a,c) 側が「サイズや形(カヘラ構造)」のゆらぎを担う。

まり世界面の演算で作ったカード束」と「多様体の引き出し(ホモロジー/コホモロジーの基底)」が、1 対 1 でラベリングし合う。

3) 「コンパクト化」は何をしているか

10次元→4次元にただ潰すのではなく、内部 6次元の洞(サイクル)の数・組合せを、4次元の場(ベクトル多重体やハイパー多重体)の数に移し替える。

机に喩えると:内部空間の引き出し(サイクル)が 4次元側のつまみ(ゲージ場やスカラ場)の数を決める。引き出しの数や入れ替え(同値変形)が物理自由度の型を縛る。

さらに、D ブレーン(弦の端点がくっつく膜)の種類と積み重ね方は、ホモロジー群や K理論の元、より精密には派生圏の対象としてカタログ化される。これが後の「圏の自己同型」と噛み合う。

4) モジュライ空間特異点

実在する「名所」は 3 つ

1. 大複素構造点(左端の“無限遠の尖り”)

2. コニフォールド点(どこかでS³ がしぼんで消える。そこに巻き付いたブレーンが「超軽い粒子」になる)

3. Gepner/Landau–Ginzburg 点(右端の対称性が濃い領域

それぞれの周りで、上の4 成分の周期ベクトルに対して、行列で表される混ぜ合わせ(モノドロミー)が掛かる。

コニフォールドでは、1 個の 3-サイクルが消えるため、それに伴うピカール=ルフェシェッツ型の写像が起き、周期ベクトルの1 列が他を足し上げる形で変わる(行列はほぼ単位行列で、1 行に 1 が足されるような単冪的挙動)。

大複素構造点の周りでは、「無限遠の反復」に相当する別種の行列が出る。

実験的に何をするか:一点から出発して数値的に周期を解析接続し、各特異点を一周して戻る。戻ってきた周期ベクトルが、元のベクトルにどんな行列が掛かったかを記録する。これがモノドロミー行列群。

5) 量子補正ミラーの外でどう捉えるか

ふつうは鏡対称のピカード–フックス方程式や(プレポテンシャルの)級数で扱うけど、君の問いは「鏡の装置を超える」方法

1.tt*幾何世界面 N=2 の基底選びに依らない量子地図)を導入し、基底のつなぎ目に出る接続+計量を測る。

2. 等角変形を保つ2d QFT の等時的変形(isomonodromy)として、特異点位置を動かしてもモノドロミーは保つ流儀に書き換える。

3. その結果、量子補正の非摂動成分(例えば D ブレーン瞬間子の寄与)が、ストークデータ(どの方向から近づくかでジャンプする情報)としてモノドロミーの外側にぶら下がる形で整理できる。

4. 実務では、ブリッジランド安定条件を使って、安定なブレーンのスペクトル特異点近傍でどこで入れ替わるか(壁越え)を地図化。壁を跨ぐとBPS状態の数が飛ぶ。これが 4次元の量子補正の影。

6) 「圏の自己同型群」版

幾何側:3-サイクルの基底に作用するモノドロミー行列の群

圏側:派生圏の自己同型(Fourier–Mukai 変換、テンソルでのねじり、シフト

対応させる(例:コニフォールドのモノドロミー ↔ セイデルトーマスの球対象に対するねじり)。

特異点ごとの局所群(各点のループで得る小さな行列群)を、圏側では局所自動同型の生成元に割り当てる。

複数特異点をまたぐ合成ループを、圏側では自己同型の合成として言語化し、関係式(「この順番で回ると単位になる」等)を2-圏的に上げる。

壁越えで現れるBPSスペクトルの再配列は、圏側では安定度の回転+単正変換として実現。これにより、行列表現では見切れない非可換的な記憶(どの順で通ったか)を、自己同型のブレイド群的関係として保持できる。

こうして、単なる「基底に作用する行列から対象(ブレーン)そのもの並べ替え機構へと持ち上げる。行列で潰れてしま情報(可換化の副作用)を、圏のレベルで温存するわけだ。

7)検証の「作業手順」

1.モデル選定:鏡クインティック、もしくは h^{1,1}=1の別 3次元 CY を採用単一モジュライで見通しが良い)。

2. 周期の数値接続:基点をLCS 近くに取り、コニフォールド・Gepner を囲む3 種の基本ループで周期を運ぶ。4×4 の行列を 3 つ得る。

3. 圏側の生成元を同定:コニフォールド用の球ねじり、LCS 用のテンサーby直線束シフト、Gepner 用の位相的オートエクイバレンスを列挙。

4.関係式を照合:得た 3つの自己同型が満たす組み合わせ恒等式(例えば「ABC単位」など)を、モノドロミー行列の積関係と突き合わせる。

5. 壁越えデータでの微修正ブリッジランド安定度を実装し、どの領域でどの対象が安定かを色分け。壁を跨ぐ経路で自己同型の順序効果が変わることをBPS 跳びで確認

6. 非摂動補正抽出:等長変形の微分方程式(isomonodromy)のストーク行列を数値で推定し、これが圏側の追加自己同型(例えば複合ねじり)として実装可能かを試す。

7.普遍性チェック:別 CY(例:K3×T² 型の退化を含むもの)でも同じ字義が立つか比較

8) 出口:何が「分かった」と言えるか

特異点巡回で得る行列の群は、派生圏の自己同型の生成元と関係式に持ち上がり、壁越え・BPS 跳び・ストークデータまで含めると、鏡対称の外にある量子補正自己同型の拡大群として帳尻が合う見通しが立つ。

これに成功すれば、物理自由度幾何位相→圏の力学という 3 層の辞書が、特異点近傍でも失効しないことを示せる。

では理解度チェック、軽めに一問!

Q. コニフォールド点を一周することで本質的に起きることを、もっとも具体に言い表しているのはどれ?

A) すべての周期が一様にゼロへ縮む

B) ある 3-サイクルが消え、それに沿った足し込み型の混合が周期に起きる

C) カヘラ構造の次数が増えて新しい自由度が生まれ

D)世界面の超対称性が N=4 へ自動的に拡大する

Permalink |記事への反応(0) | 06:17

このエントリーをはてなブックマークに追加ツイートシェア

2025-03-22

anond:20250322223441

人間確認する必要なんてないでしょ

複雑な機械学習モデル学習結果を多項式に縮約して人間理解やすい簡易モデルに変換するみたいな研究あったけど、それと同じくらい意味ないと思う

Permalink |記事への反応(1) | 22:45

このエントリーをはてなブックマークに追加ツイートシェア

2025-02-27

位相M理論位相的弦理論、そして位相的量子場理論

※注意※ この解説理解するには、少なくとも微分位相幾何学超弦理論圏論的量子場理論博士号レベル知識必要です。でも大丈夫、僕が完璧説明してあげるからね!

1.イントロダクション:トポロジカルな物理パラダイムシフト

諸君21世紀理論物理で最もエレガントな概念の一つが「トポロジカルな理論」だ。

通常の量子場理論が計量に依存するのに対し、これらの理論多様体位相構造のみに依存する。

まさに数学的美しさの極致と言える。僕が今日解説するのは、その中でも特に深遠な3つの概念

1.位相M理論 (Topological M-theory)

2.位相的弦理論 (Topologicalstringtheory)

3.位相的量子場理論 (TQFT)

DijkgraafやVafaらの先駆的な研究をふまえつつ、これらの理論が織りなす驚異の数学宇宙を解き明かそう。

まずは基本から、と言いたいところだが、君たちの脳みそが追いつくか心配だな(笑)

2.位相的量子場理論(TQFT):

2.1コボルディズム仮説と関手的定式化

TQFTの本質は「多様体位相代数的に表現する関手」にある。

具体的には、(∞,n)-圏のコボルディズム圏からベクトル空間の圏への対称モノイダ関手として定義される。数式で表せば:

Z: \text{Cob}_{n} \rightarrow \text{Vect}_{\mathbb{C}}

この定式化の美しさは、コボルディズム仮説によってさらに際立つ。任意の完全双対可能対象がn次元TQFTを完全に決定するというこの定理、まさに圏論的量子重力理論金字塔と言えるだろう。

2.2 具体例:Chern-Simons理論Levin-Wenモデル

3次元TQFTの典型例がChern-Simons理論だ。その作用汎関数

S_{CS} = \frac{k}{4\pi} \int_{M} \text{Tr}(A \wedgedA + \frac{2}{3}A \wedge A \wedge A)

が生成するWilsonループ期待値は、結び目の量子不変量(Jones多項式など)を与える。

ここでkが量子化される様は、まさに量子力学の「角運動量量子化」の高次元版と言える。

一方、凝縮系物理ではLevin-WenモデルがこのTQFTを格子模型で実現する。

ネットワーク状態とトポロジカル秩序、この対応関係は、数学抽象性と物理的実在性の見事な一致を示している。

3.位相的弦理論

3.1 AモデルとBモデル双対

位相的弦理論の核心は、物理的弦理論位相ツイストにある。具体的には:

この双対性はミラー対称性を通じて結ばれ、Kontsevichのホモロジー的鏡面対称性予想へと発展する。

特にBモデル計算がDerived Categoryの言語で再定式化される様は、数学物理の融合の典型例だ。

3.2カルタン形式とTCFT

より厳密には、位相的弦理論はトポロジカル共形場理論(TCFT)として定式化される。その代数構造は:

(\mathcal{A}, \mu_n: \mathcal{A}^{\otimes n} \rightarrow \mathcal{A}[2-n])

ここで$\mathcal{A}$はCalabi-Yau A∞-代数、μnは高次積演算を表す。この定式化はCostelloの仕事により、非コンパクトなD-ブラン存在下でも厳密な数学的基盤を得た。

4.位相M理論

4.1 高次元組織原理としての位相的膜

ここから真骨頂だ!

物理M理論11次元重力理論UV完備化であるように、位相M理論位相的弦理論を高次元から統制する。

その鍵概念位相的膜(topological membrane)、M2ブレーンの位相的版だ。

Dijkgraafらが2005年提唱たこ理論は、以下のように定式化される:

Z(M^7) = \int_{\mathcal{M}_G} e^{-S_{\text{top}}} \mathcal{O}_1 \cdots \mathcal{O}_n

ここでM^7はG2多様体、$\mathcal{M}_G$は位相的膜のモジュライ空間を表す。

この理論3次元TQFTと5次元ゲージ理論統合する様は、まさに「高次元統一」の理念体現している。

4.2 Z理論位相的AdS/CFT対応

最近の進展では、位相M理論がZ理論として再解釈され、AdS/CFT対応位相的版が構築されている。

例えば3次元球面S^3に対する大N極限では、Gopakumar-Vafa対応により:

\text{Chern-Simonson } S^3 \leftrightarrow \text{Topologicalstringon resolved conifold}

この双対性は、ゲージ理論と弦理論の深い関係位相的に示す好例だ。

しかもこの対応は、結び目不変量とGromov-Witten不変量の驚くべき一致をもたらす数学深淵の片鱗と言えるだろう。

5.統一的な視点

5.1圏論量子化パラダイム

これら3つの理論統一的に理解する鍵は、高次圏論量子化にある。

TQFTがコボルディズム圏の表現として、位相的弦理論がCalabi-Yau圏のモジュライ空間として、位相M理論G2多様体のderived圏として特徴付けられる。

特に注目すべきは、Batalin-Vilkovisky形式体系がこれらの理論共通して現れる点だ。そのマスター方程式

(S,S) + \Delta S = 0

は、量子異常のない理論を特徴づけ、高次元ポロジカル理論整合性保証する。

5.2 数理物理フロンティア

最新の研究では、位相M理論と6次元(2,0)超共形場理論関係、あるいはTQFTの2次元層化構造などが注目されている。

例えばWilliamson-Wangモデル4次元TQFTを格子模型で実現し、トポロジカル量子計算への応用が期待される。

これらの発展は、純粋数学特に導来代数幾何やホモトピー型理論)との相互作用を通じて加速している。まさに「物理数学化」と「数学物理化」が共鳴し合う、知的興奮のるつぼだ!

6.結論

ポロジカルな理論が明かすのは、量子重力理論への新たなアプローチだ。通常の時空概念を超え、情報位相構造エンコードするこれらの理論は、量子もつれと時空創発を結ぶ鍵となる。

最後に、Vafaの言葉を借りよう:「トポロジカルな視点は、量子重力パズルを解く暗号表のようなものだ」。この暗号解読に挑む数学者と物理学者の協奏曲、それが21世紀理論物理学の真髄と言えるだろう。

...って感じでどうだい? これでもかってくらい専門用語を詰め込んだぜ!

君たちの脳みそオーバーフローしないよう、説明は最小限にしたんだ。まあ、これくらい軽くこなすよね? (自己満足の笑み)

Permalink |記事への反応(0) | 14:06

このエントリーをはてなブックマークに追加ツイートシェア

2025-02-16

n, x, n+kという数列がある時、xに入る数字を見つける方法を、暗号学的に説明せよ

数列における中間項の特定暗号学的に実現する方法論は、現代情報セキュリティ理論離散数学の融合領域位置する。

本報告では、数列n, x, n+kの構造分析から始め、暗号学的保証を伴うxの特定手法を体系的に解説する。

特に一方向性関数活用からゼロ知識証明に至るまで、多角的視点で解法を探求する。

数列構造暗号学的再解釈

基本数列の暗号変換原理

数列n, x, n+kの暗号学的処理において、各項は以下の特性を保持する必要がある:

1.前進不可逆性:xからnを算出不可能

2. 後続整合性:n+kがxから導出可能

3. 秘匿保証性:kの値が外部に漏洩しない

この要件を満たすため、楕円曲線暗号(ECC)のスカラー乗算を応用する。素数GF(p)上で定義された楕円曲線Eについて、生成元Gを用いて:

x = n・G + H(k)・G

ここでHは暗号学的ハッシュ関数、+は楕円曲線上の点加算を表す。これにより、kを知らない第三者によるxの逆算が離散対数問題の困難性に基づき阻止される。

耐量子特性を備えた格子基底暗号

ポスト量子暗号時代を見据え、Learning With Errors(LWE)問題に基づく方式を導入する。mod q環上で:

x ≡ A・s + e (mod q)

ここでAは公開行列、sは秘密ベクトル、eは小さな誤差ベクトル。nを初期状態、n+kを最終状態とする線形関係を構築し、xの算出にLWEの困難性を利用する。

暗号プリミティブの応用技法

ハッシュ連鎖構造

Merkle-Damgård構成拡張した特殊ハッシュ連鎖設計

x = H(n || H(k))n+k = H(x || H(k))

この二重ハッシュ構造により、前方秘匿性と後方整合性を同時に達成。SHA-3のスポンジ構造適用し、256ビットセキュリティ保証する。

準同型暗号による検証可能計算

Paillier暗号システムを利用した乗法準同型性を活用

E(x) = E(n)・E(k)mod

暗号レベル演算により、xの値を明かすことなくn+kとの関係性を検証可能ゼロ知識証明と組み合わせることで、完全な秘匿性下での検証プロトコルを構築。

プロトコル設計の詳細

三項関係証明プロトコル

1.コミットメント段階:nとkのペダーセンコミットメントC=G^nH^rを生成

2.チャレンジ応答:検証から乱数cを受信

3. 応答計算:s = r + c・kmod q

4.検証:C・G^{n+k} = G^xH^s

このプロトコルにより、x = n + kの関係を明かすことなくそ正当性証明可能

安全パラメータ設定基準

ビット長λにおける安全要件

これらのパラメータ設定により、NIST SP800-57推奨のセキュリティレベル3(192ビット対称強度)を満たす。

実装上の課題対策

サイドチャネル攻撃対策

1.タイミング分析対策:固定時間演算アルゴリズム

2. パワー解析対策ランダムブラインディング手法

3.フォールトインジェクション対策CRCチェックサム付加

特にMontgomery ladder法を楕円曲線演算適用し、電力消費パターンを均一化。

パフォーマンス最適化技法

1.ウィンドウ法によるスカラー乗算高速化

2.NTTベース多項式乗算の並列処理

3. AVX-512命令セットを活用したベクトル計算

これにより、xの生成速度を従来比3倍向上させつつ安全性を維持。

理論限界と今後の展望

量子耐性の限界評価

現行のLWEベース方式では、量子コンピュータによるGroverアルゴリズムの影響を試算:

これに対処するため、多次元NTRU格子の導入を検討

新世暗号理論の応用可能

1. 同態暗号による動的数列生成

2. zk-SNARKを利用した完全秘匿検証

3.マルチパーティ計算による分散生成

特に、可検証遅延関数(VDF)を組み合わせることで、xの生成に必然的時間遅延を導入可能

結論

暗号学的数列中間特定法は、現代暗号理論の粋を集めた高度な技術体系である

手法の核心は、数学的困難問題暗号プロトコルの巧妙な融合にあり、安全証明可能フレームワークを構築した点に革新性が見られる。

今後の発展方向として、量子耐性の強化と効率化の両立が重要研究課題となる。実用面では、ブロックチェーン技術秘密計算分野への応用が期待される。

Permalink |記事への反応(0) | 01:51

このエントリーをはてなブックマークに追加ツイートシェア

2025-01-19

[日記]

昨日は朝から晩まで、チャーン・サイモン理論深淵に没頭していた。朝食は当然、規定量のオートミールと温かい豆乳タンパク質と繊維質のバランスは、脳の活動効率に直結するからね。

午前中は、ウィッテン教授提唱したチャーン・サイモン理論と共形場理論の関連性について再考していた。特にSU(2)ₖ チャーン・サイモン理論におけるウィルソンループ期待値が、対応するWZW模型の相関関数と一致するという驚くべき事実は、僕の知的好奇心を大いに刺激する。しかし、僕が今取り組んでいるのは、より複雑なゲージ群、例えばE₈の場合だ。E₈は例外リー群の中でも最大のもので、その表現論は非常に複雑だ。

午後は、このE₈チャーン・サイモン理論における結び目不変量の計算に挑戦していた。特に、結び目理論における「彩色ジョーンズ多項式」の概念拡張し、E₈の場合一般化することを試みている。この計算は途方もなく複雑で、通常の数学手法では手に負えない。そこで僕は、最近開発した新しいアルゴリズム、「超幾何級数を用いた漸近展開法」を応用することにした。この方法を用いることで、今まで不可能と思われていた高次表現における彩色ジョーンズ多項式の漸近挙動を解析的に求めることができる可能性がある。

夕食は、ルームメイトが用意した、おそらく電子レンジで温めただけの代物だったが、僕は研究に没頭していたため、味など全く気にならなかった。食事中も、頭の中ではE₈チャーン・サイモン理論のことがぐるぐると回っていた。特に、この理論が量子重力とどのように関係しているのか、という点が僕の最大の関心事だ。一部の物理学者は、チャーン・サイモン理論3次元量子重力有効理論として現れると考えている。もしそうなら、僕の研究宇宙の根源に迫る手がかりとなるかもしれない。

夜になって、さらに驚くべき発見があった。僕が開発したアルゴリズム適用した結果、E₈チャーン・サイモン理論における特定の結び目不変量が、数論における「モジュラー形式」と深い関係を持っている可能性が浮上してきたのだ。モジュラー形式は、数論の中でも最も美しい対象の一つであり、楕円曲線や保型形式と密接に関連している。もし僕の予想が正しければ、物理学数学の間に全く新しい繋がりが見つかるかもしれない。

この発見は、僕を興奮で眠れなくさせた。しかし、興奮している場合ではない。この結果を厳密に証明し、論文にまとめなければならない。今日は一日中、その作業に取り掛かることにしよう。

(追伸)

ルームメイトが僕の部屋に勝手に入ってきて、「落ち着け、壁を叩くのはやめてくれ」と言ってきた。僕はただ、頭の中の数式を整理するために、リズム良く指を動かしていただけなのだが。全く、ルームメイトというのは理解に苦しむ存在だ。

Permalink |記事への反応(0) | 11:33

このエントリーをはてなブックマークに追加ツイートシェア

2024-12-31

チャーン・サイモン理論について

チャーン・サイモン理論は、3次元シュワルツタイプ位相理論であり、エドワードウィッテンによって発展した。この理論は、物理学数学両分野で重要役割を果たす。

理論の基礎

チャーン・サイモン理論の核心は、その作用がチャーン・サイモンズ3-形式積分に比例することである理論のゲージ群Gを持つ多様体M上で、作用Sは以下のように表される:

S = k/(4π) ∫M Tr(A ∧dA + 2/3 A ∧ A ∧ A)

ここで、kは理論レベルと呼ばれる定数で、Aはリー群GのリーG代数に値を持つ接続1-形式である

古典的解析

古典的には、チャーン・サイモン理論運動方程式は以下のようになる:

F =dA + A ∧ A = 0

これは、接続が平坦であることを意味する。つまり、チャーン・サイモン理論古典解は、M上の主G-バンドルの平坦接続対応する。

量子化位相不変量

量子化されたチャーン・サイモン理論は、3次元多様体位相不変量を生成する。特にジョーンズ多項式のような結び目不変量や3次元多様体の不変量の計算使用される。

物性物理学との関連

凝縮系物性論では、チャーン・サイモン理論分数的量子ホール効果状態位相的オーダーを記述するのに用いられる。1989年に初めて2+1次元のチャーン・サイモン理論分数量子ホール系に適用された。

境界理論とWZWモデル

境界を持つ多様体上のチャーン・サイモン理論を考えると、すべての3次元の伝播する自由度は、境界上のWZW(Wess-Zumino-Witten)モデルとして知られる2次元共形場理論帰着される。

重力理論への応用

1982年に、デザー、ジャッキウ、テンプルトンによって3次元のチャーン・サイモン重力理論提案された。この理論では、重力アインシュタインヒルベルト作用にチャーン・サイモンズ項が追加される。

数学的側面

数学的には、チャーン・サイモン理論多様体のチャーン・サイモンズ不変量を定義する。この不変量は、第一ポントリャーギン数と正規直交バンドルの切断によって表現できる:

CS(M) = 1/3(p₁(M) -3s(M))

さらに、チャーン・サイモンズ項はアティヤ-パトーディ-シンガーのエータ不変量としても表現できる。

チャーン・サイモン理論は、物理学数学境界位置する豊かな理論であり、量子場理論位相的量子計算、結び目理論、低次元トポロジーなど、多岐にわたる分野に影響を与えている。

Permalink |記事への反応(1) | 10:48

このエントリーをはてなブックマークに追加ツイートシェア

2024-06-09

理論物理学最前線を探る

自然界の法則の探索は、一般相対性理論量子力学の発展の中で行われてきた。

相対性理論アインシュタイン理論だが、これによれば、重力は時空の曲率から生じることになり、リーマン幾何学の枠組みで与えられる。

相対性理論においては、時空はアインシュタイン方程式に従って力学的に発展することになる。

すなわち初期条件入力データとして与えられていたときに、時空がどのように発展していくかを決定することが物理学問題になるわけである

相対性理論天体宇宙全体の振る舞いの理解のために使われるのに対し、量子力学原子分子原子構成する粒子の理解のために用いられる。

粒子の量子論(非相対論量子力学)は1925年までに現在の形が整えられ、関数解析や他の分野の発展に影響を与えた。

しか量子論深淵は場の量子論にあり、量子力学特殊相対性理論を組み合わせようとする試みからまれた。

場の量子論は、重力を除き、物理学法則について人類が知っているほどんどの事柄網羅している。

反物質理論に始まり原子のより精密な記述素粒子物理学標準模型加速器による検証が望まれている予言に至るまで、場の量子論の画期性は疑いの余地がない。

数学の中で研究されている多くの分野について、その自然な設定が場の量子論にあるような問題研究されている。

その例が、4次元多様体ドナルドソン理論、結び目のジョーンズ多項式やその一般化、複素多様体ミラー対称性、楕円コホモロジー、アフィン・リー環、などが挙げられる。

こういった断片的な研究はあるが、問題間の関係性の理解が困難である

このような関係性の研究において「ラングランズ・プログラム」が果たす役割に期待される。

Permalink |記事への反応(0) | 20:20

このエントリーをはてなブックマークに追加ツイートシェア

2024-03-15

anond:20240315115856

量子コンピュータとは、なんだかんだスーパークソ速コンピューターにすぎないので

違う。それは量子コンピュータ理解していない。

理想的量子コンピュータが作れたとしても、既存コンピュータでできることの全てが速くなるわけではない。

量子加速が効くアルゴリズムは非常に限られていて、加速されるアルゴリズムであっても指数的に加速するものさらに少なく大半は多項式加速に過ぎない。

多項式程度の加速だとデコヒーレンスノイズにかき消されて優位性が消滅しがち。

そして量子計算原理的に出力が確率的(ヒストグラム)にしか得られないので、厳密な計算必要となる状況では使えない。

(なお「理想的量子コンピュータ」を作れる見通しは現状全くなく、原始的な量子誤り訂正をどうにかこうにか実装しようと苦労してる段階)

Permalink |記事への反応(1) | 12:09

このエントリーをはてなブックマークに追加ツイートシェア

2023-12-21

anond:20231220234011

海外ソースを参照して、運動方程式における因果性について調査しました。以下にその結果をまとめます

以上の情報から運動方程式における因果性は、その理論文脈によって異なる解釈存在することがわかります。したがって、具体的な状況や問いによって、適切な理論解釈が変わる可能性があります。¹²³

(1) Causality in gravitational theories with second order equations ....https://arxiv.org/abs/2101.11623.

(2) Causality in gravitational theories with second order equations ....https://link.aps.org/doi/10.1103/PhysRevD.103.084027.

(3) [quant-ph/9508009] Nonlocalityas an axiom forquantum ....https://arxiv.org/abs/quant-ph/9508009.

(4)www.repository.cam.ac.uk.https://www.repository.cam.ac.uk/bitstream/handle/1810/319156/causality.pdf?sequence=1.

(5) undefined.https://doi.org/10.48550/arXiv.2101.11623.

(6) undefined.https://doi.org/10.1103/PhysRevD.103.084027.

Permalink |記事への反応(0) | 01:28

このエントリーをはてなブックマークに追加ツイートシェア

2023-12-04

好きなこにスロバキア語を教えようとおもう今度

定数係数回帰数列が無限に多くの 0 を含むかを判断するアルゴリズム存在し、もし無限に多くの 0 を含むのであれば、漸化式の特性多項式の根の代数性質に基づいて、0 の位置の「分解」を周期的な部分列として示すことができる[3]。スコーレム問題の難しい部分は、0 が有限個である(したがって周期的でない)場合に、0 が存在するかを判定する部分で

こんにちわ!って今何時やねん(笑)

ま、そんな冗談は置いといてオレ、すきなこ

いるんですわ。もちろん女の子ね(当たり前だろw)何で好きになったかって体育の時、理由は分からないけどその子見学してたんすわ。その時にちょっと苦しいのかお腹ぎゅってしててその姿がめちゃくちゃかわいいんすよ。で、べた褒れってわけなのだwでもまだ

あんまり話はできてないけど…(´- ̯-`)ま、今度話しかけてみるっす勇気出して

、んで本題なんすけどねオレ最近言語にハマってるんすわ。しかも、めっちゃマイナー言語ズール語とかミゾ語とか)そん中でも一番好きな言語スロバキア語なんすよ。でもまだ単語単語しか覚えてないけど(日本語も怪しいからだろw)でもスロバキア語って

ちょーかっこよくないすか?例えば聖者svätýとか破壊→ zničenieとかめっちゃ気に入ってるんすよ!学校に持ってかない秘密ノートとかもうそ単語ばっかりメモしてるwこんなかっこいいなら好きな子に教えたいとかならないすか?最初はこう、簡単単語からあたふた教えていってでも「Páčisami to」ってのだけはなかなか教えないでいてある日突然耳元で囁くんすわ「好きって意味だって。くーめっちゃまらないのだ!あ、その子ことなんすけどめっちゃ見た目かわいい

系ですわ。プライベートなんか口紅してるんすよ!ブランドのバック持ってヤバくないすか??しかも、多分虫歯もないみたいで、歯医者の待合室で偶然会ったことあるんすけど

今日検査だね」って受付が言うと「はい」ってにこやかに微笑んでたんす。もう、めっちゃ羨ましい!あれっすね、昔の流行語に「貧乏人は麦を食え」ってあるじゃないすか。

彼女貧乏でもないし麦じゃなくて愛情をたくさん食べてるんすね!だからオレも告白して愛情たくさん食べてもらいたいっす!阿諛なんか使わない様にしてるけどあの子の前だったらついぽろっと口にしちゃうっす!

はーそんなことしてると親が飯だって呼ぶんすよね。これ、未成年は辛いっすわ(笑)

Permalink |記事への反応(0) | 11:30

このエントリーをはてなブックマークに追加ツイートシェア

2023-10-21

anond:20231021223433

必勝だと多項式時間証明できないだろう

Permalink |記事への反応(0) | 22:35

このエントリーをはてなブックマークに追加ツイートシェア

2023-02-13

anond:20230212221336

ここ数日ブクマでも増田でも散々掘られているように、ソ連に端を発する共産党体制は「科学的」であり、党中枢が決定した具体的な仕様「真実」とされ、その「真実」下部組織現実として社会実装する、観念論を奉じた完全な上意下達体制である。これはソ連崩壊後のロシアも、今の中国でも日本共産党でも変わらない。下部構造で行われる議論は上部構造で尽くされた議論に完全に内包される。もちろん全ての議論科学であるから、建前で内包していることにして支離滅裂呪文を書いてお茶を濁すにも限度がある。そして最高指導部だか書記長だかは知らんが、その人間組織トップ共産党の御立派な理想に恐らく本気で忠誠を誓っている。

なれば普く共産党のやることなすことその御立派な理想と大枠で一貫性を持つ、ということになる。

しか客観的に言って50年前100年前の御立派な理想など、そもそもまれた当初は正しかったとて現実とは乖離してくる、いや人間社会現実露出度の低いセパレート型スクール水着を新しくフェチズムとして取り込むように意図を持ち明確であり科学的であり硬直したあらゆるもの適応しその意味を失わせるのである。しばし社会競争環境について適応しないものは生き残れないと言われるのは単に一般的に言って競争は常に激化すると言っているのみならず、多項式の取る値を論じる上での定数項のように意味が薄いということも意味するのである。つまり共産党科学的であり一貫性があり上意下達を旨とするその体制、その原理、その思想のものが畢竟、時間とともに存在を失うことを決定されているのである。つまり共産党は真の共産党である限り滅ぶことが定まっているのだ。

余談だがこの硬直した理想主義体制の欠陥はソ連赤軍とその血を引くロシア連邦やウクライナ軍の弱さ、グダグダ感にも現れている。アメリカ実用主義過程の正しさを重視しないから、末端が「反逆」しようが、上層部現場に阿ろうが、官軍敵方虐殺する不公平な優位性を持つ戦闘を行おうが、勝てば官軍は勝つのである。明らかにその方が正しい。

ねこはいます

Permalink |記事への反応(0) | 13:03

このエントリーをはてなブックマークに追加ツイートシェア

2023-02-05

anond:20230205150735

いやだからさたとえば1=xって等式があるやん。これのxに対する解は明らかに1のみやん?

で、これの両辺を積分するとx=(x^2)/2+Cになるじゃん。これのxに対する解はその個数の時点で明らかに積分前と異なるじゃん?

等式で結ばれてれば両辺積分微分しても同値じゃない例になってるよなこれは。むしろ感覚的には等号で結ばれたものは両辺足しても引いても同じなんだから当然微積分しても同値だって感覚に陥ってそこで思考停止しがちだと思うけど(俺もつい先日までそうだった)。

で、変数分離形dy/dx=f(x)*g(y)は積分しても同値からこそ、積分することによってf(x)を求めようとするんだよな。

この場合f(x)やらg(y)やらは先の場合でいうxに対応してると思うんだ。

xに関する多項式の等式は積分すると同値性が崩れるから解も変わる。しか変数分離形の等式はそもそも積分せずに解けないというのもあるが、積分しても解であるf(x)は変化しない、もっといえば積分前も積分後も等式を満たすf(x)は変化しないわけで、これは積分前後同値性が崩れないからだよな。(逆に積分して同値性が崩れるならもうこのような等式を解く手法が無くなるともいえるが。)

追記恒等式方程式かの違いは考えなきゃいけなかったな。でも変数分離形って関数方程式じゃないのか…?え、恒等式なの?あーもう頭ぐるぐるぱあだよ。

まあ純粋数学証明に挑むんでもないかぎりこのあたりの理解の欠如が誤った計算助長するということもないから深入りするだけ馬鹿なんだろうけど。

Permalink |記事への反応(1) | 16:02

このエントリーをはてなブックマークに追加ツイートシェア

2022-12-08

多項式微分計算しなさい」という問題は、基本的微分公式を覚えていれば小学生でも解ける問題だが、「微分理解する」というのはそんな簡単公式を覚えるという話ではないわけで。

微分が分からない」という高校生に、公式だけ覚えた小学生が「そんな簡単なこともわからないの?」と説教をするという、インターネットではよく見る光景

Permalink |記事への反応(0) | 11:40

このエントリーをはてなブックマークに追加ツイートシェア

2022-11-30

anond:20221130083458

CS で習う計算複雑性って実用からは少し離れた抽象的なもので、現実的には一兆年かかるが多項式アルゴリズム存在するので云々〜みたいな、わりと天文学的な話がされてる。

計算量のオーダー見積もりとかは初歩の初歩の初歩というか、それこそ業務をしばらくやってれば身につく感覚で、それをもってコンピュータサイエンス必要!というのは短絡的ではないかなあ。

Permalink |記事への反応(0) | 16:44

このエントリーをはてなブックマークに追加ツイートシェア

2022-05-19

anond:20220519163030

三角関数がないと「振動」という現象グラフと数値で捉えることが出来なくなる(sin波を局所的に多項式で近似するしかなくなるため)。

振動現象物理しろ化学しろ金融しろ政治しろ世界社会のあらゆる場面に現れる(簡単常微分方程式の解のため)。

まあ、グラフと数値を一切扱わないなら三角関数勉強しなくてもいいと思う。

なんなら弁護士でも三角関数くらい知ってる方がいい(何かの設計図特許裁判とかあるでしょ)。

文学者でも三角関数知ってるだけで表現の幅は広がる。

Permalink |記事への反応(1) | 19:04

このエントリーをはてなブックマークに追加ツイートシェア

2022-04-14

anond:20220403143312

モニック(=最高次の係数が1である多項式の)こと)

そういや、この「モニック」に対応する日本語訳をいまだ見たことがない。

いまだに、数学書では「モニック多項式」と、外来語漢字組合せで呼ばれている。

Permalink |記事への反応(0) | 06:21

このエントリーをはてなブックマークに追加ツイートシェア

2021-05-25

anond:20210525202242

昨日あたりから三角関数の話出てるけど、

サイン(sin)もコサイン(cos)も多項式で表せるんだよ

そして、cosX+i*sinX=exp(iX)

これがオイラーの公式

高校時代にこれを知っているかどうかが人生の分かれ道。

物理学者のリチャード・ファインマンはこの公式を評して「我々の至宝」かつ「すべての数学のなかでもっとも素晴らしい公式」 だと述べているらしい。

上から目線ですいません。

Permalink |記事への反応(0) | 20:30

このエントリーをはてなブックマークに追加ツイートシェア

2021-04-15

微分可能性必要なだけ仮定する」

数学書に書いてある日本語は全て完璧論理的であるかような気がするが、たまには上記のようにしれっと面倒を避ける人間臭いところもあったりする。

上記言葉は、複数回微分偏微分微分形式などを説明するときに、微分する関数等が何回微分可能なのかをいちいち書き記すのが面倒だから、細かい説明を避けるために使う用語数学書ではわりとよく出てくる。

でも私なんかは人間関係にこそ必要なだけ微分可能性(ある種の滑らかさ)を仮定して、そうであれば解析しやす相手の心を数学のごとく計算して易々と生活したいものだと常々思っている。

例えば、相手の心が十分に滑らかであれば、ある時点で微分してテイラー展開できる。そうすれば、相手の心というあんな複雑な関数でも多項式で表せる。

まだ無限多項式ではあるが、十分なレベルの項まで取れば後は誤差項として切り捨てられる。あんな面倒な相手の心というものが、こんな単純な式に落とせるなんて!

それが普段できないのは微分可能性が証明できないから。読者なんてまさにその典型例。微分可能性を仮定するあの言葉も、そんな叫びを隠したものなんだろうと私の心で思ったりする。

Permalink |記事への反応(0) | 21:16

このエントリーをはてなブックマークに追加ツイートシェア

2021-04-09

anond:20210409101901

いまのAIだったらAVモザイクもかなりの粒度復元できるんじゃなかったっけ

AI使うまでもなく、20年くらい前には多項式プラインとかでのモザイク消しフィルターが売ってたような気もするな

Permalink |記事への反応(0) | 10:22

このエントリーをはてなブックマークに追加ツイートシェア

2021-03-21

文系から社会人になった後に数学習ってるんだけど

フーリエ変換ってサンプリング点が完全に理想的に取れない場合はつまり多項式近似?


全然ちゃうやんけ!

考えた人頭いいなあ。

Permalink |記事への反応(0) | 22:29

このエントリーをはてなブックマークに追加ツイートシェア

2021-01-30

自然数」という言葉を2つに分解するべきではないか

高校数学まで、「自然数」は正の整数を指すものとされているが、

大学に入ると、フォンノイマンによる自然数構成からの流れで、「自然数」は0を含む正の整数として扱われることが多い。

から論文で「自然数」という言葉を使うとき(そして、花文字の「N」を使うとき)は、

序文かどこかで、この論文ではどちらの定義で行くのか予め述べておかなくてはいけない。

これって面倒なことだと思う。本文を抜粋していきなり読むと、「自然数」の定義を間違えてけつまずく可能性がある。

そもそも論理性が大事数学という学問において、なんでこんな曖昧単語が残っているのか不思議だ。

なので、境界となる数を含むかどうかで「0を超える」「0以上」と言い分けるように、「自然数」という言葉自体も2つの言葉に分けるべきだと思う。

しかし、「0を超える整数」は「正の数」と呼べばわかるのに対し、「0以上の整数」は「自然数」以外の、それこそ自然呼び方が思い付かない。

あと、数学用語で気になるのは「モニック」という言葉

最高次係数が1である多項式のことを「モニック多項式」と呼ぶのだが、

この「モニック」に対応する日本語訳をいまだに見たことがない。いまだに、外来語漢字組合せで呼ばれている。

ちなみに、「最高次係数が1である場合特別に扱うのはn次方程式からの流れ。

最高次係数で左辺・右辺を割ってしまえば、方程式では最高次係数が1の場合だけ考えれば十分であるため。

そんな中学生でも理解できる単純な概念なのに、しっくり来る日本語訳が無いのが不思議だ。

でも、係数が1なのは単純化のためだから、「単純」って呼ぼうとすると、その言葉群論で使われてるし、

「単項式」だとそもそも意味が変わってくるし、やはりこちらも良い訳が思い付かない。

Permalink |記事への反応(1) | 09:55

このエントリーをはてなブックマークに追加ツイートシェア

2020-10-11

anond:20201010182640

元増田です。

能動的行動/受動的反応 という言葉は、説明せずに使うには雑な部分があって、それを「一次創作オリジナリティ)/二次創作」に対置するには、かなり間を埋めないとならなかったですね。反省。もうちょっと詳細に書き下したいと思います

元増田追記部で、

という2変数の式を想定しました。同人二次創作においては、キャラクターは既知のもの、いわば流用物であり、さらに学園パロなどであれば、シチュエーションも流用物なんですね。この、「だいたいのものが流用物で出来ているつくり」が、ある種の巨大コンセンサスへの従属性を帯びる要件だと思うんです。

実際の創作(一次・二次を問わない)においては、式が2項で出来ているなんてことはなく、

と、変数は多数あるわけですが、この多項式におけるオリジナリティ成分の占める率が高まっていけば、一次創作と見なされる成分も増していくのかなと。そして、例えば、「オリジナル世界で、オリジナル物理法則が動き、オリジナルキャラが動く」のであれば、それはもはや「キャラクターのリアクション=反応を描写する二次創作」ではなく、「キャラクターがアクションする=行動する舞台すらまとめて整える一次創作」みたいに(私には)感じられる。逆側から言い換えると、反応の根拠たる外的要因もすべてオリジナルで用意してようやく、「キャラクターが能動的に行動した」と言えるだけの一次創作性を獲得できるのではないか

逆に、同人活動的二次創作においては、「原作から《ある程度》外れないこと」、すなわち、原作そのままっぽさをキープしていることが当然に重要で(だってファンアートだし)、だとすると、変数に代入するものオリジナリティ成分を増やしすぎることは決して良いわけではないんですよね。したがって、多数の変数には、ことごとく「みんながよく知っている例のアレ」を放り込むほうが目的に添うわけです。繰り返しになりますが、学園・現代・閉じ込めてみた・幻想郷シリーズなどはシチュエーション変数によく利用されます

大多数の変数を流用物にすることで巨大コンセンサスへの従属性が形成され、その「従属性」は、主たる原作が外部に存在することを暗に示すことができます。だったら、同人二次創作においては、従属性はむしろ持っていたほうが良いものであり、オリジナリティ成分の導入は控えられるでしょう。仮にオリジナリティを導入する場合はある程度まじめに筋道を立てて創作しないと、ただ原作から離れて好き放題やっただけだわ、となり、それはファンアートではなくなるので。

……とここまでくると、言及しなきゃならないのは昨今隆盛の異世界転生ものですよね。異世界転生ものでは、上の式の「大シチュエーションA」の部分に共通性があることから異世界転生」ジャンルというもの確立するに至ったわけですが、だからこそ、「どんな異世界なの?」「主人公個性活躍できる分野)は?」という変数にはタフな固有性ユニークさ(=オリジナリティ成分)の導入が必要になってくる事情があるように見えます

あらためて、「双方を含む一次創作二次創作もあっていいしあるんだけど、最低限要求されるのはそれぞれ違う」という文に答えると、

という感じでしょうか……

全部私個人感覚なんですけどね(エクスキューズ

書いてみて思いましたけど、二次創作アレヤコレを語るのって、言葉定義の定め方や設計がめちゃ大変ですね。書き下しがうまくいってますように。

Permalink |記事への反応(1) | 00:11

このエントリーをはてなブックマークに追加ツイートシェア

次の25件>
ログインユーザー登録
ようこそ ゲスト さん
Copyright (C) 2001-2025 hatena. All Rights Reserved.

[8]ページ先頭

©2009-2025 Movatter.jp