
はてなキーワード:変分法とは
フェミニズムの分類が多すぎると聞いて
記述集合論(Borel階層, Projective階層, 汎加法族)
モデル理論(型空間, o-極小, NIP, ステーブル理論)
再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)
構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)
体論・ガロア理論
表現論
K-理論
初等数論(合同, 既約性判定,二次剰余)
解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)
p進数論(p進解析, Iwasawa理論, Hodge–Tate)
超越論(リンドマン–ヴァイエルシュトラス, ベーカー理論)
実解析
多変数(Hartogs現象, 凸性, severalcomplex variables)
関数解析
バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数
フーリエ解析,Littlewood–Paley理論, 擬微分作用素
確率解析
常微分方程式(ODE)
偏微分方程式(PDE)
非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)
幾何解析
リッチ流, 平均曲率流,ヤン–ミルズ,モノポール・インスタントン
エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学
点集合位相,ホモトピー・ホモロジー, 基本群,スペクトル系列
4次元トポロジー(Donaldson/Seiberg–Witten理論)
複素/ケーラー幾何(Calabi–Yau, Hodge理論)
スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間
多面体, Helly/Carathéodory,幾何的極値問題
ランダムグラフ/確率的方法(Erdős–Rényi, nibble法)
加法的組合せ論(Freiman, サムセット, Gowersノルム)
彩色,マッチング,マイナー理論(Robertson–Seymour)
列・順序・格子(部分順序集合, モビウス反転)
測度確率, 極限定理, Lévy過程, Markov過程, 大偏差
統計学
ノンパラメトリック(カーネル法, スプライン,ブーストラップ)
時系列(ARIMA,状態空間, Kalman/粒子フィルタ)
非凸最適化
離散最適化
整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム
Littleの法則, 重み付き遅延, M/M/1, Jackson網
エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み
公開鍵(RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識
計算複雑性
機械学習の数理
量子場の数理
相転移, くりこみ, Ising/Potts, 大偏差
数理生物学
数理神経科学
データ解析
どちらにしてもラグランジュの未定乗数法は基本かと思うが、君が例に挙げたような「無限次元の数列空間上で、局所的な線形制約を持つ対象に対して、関数を最大化・最適化する問題」を取り扱っている可能性のある論文を探したよ。
Semi‑infinite programming, duality, discretization and optimality conditions
https://optimization-online.org/wp-content/uploads/2008/07/2028.pdf
Infinite‑dimensional optimization
https://en.wikipedia.org/wiki/Infinite-dimensional_optimization
https://en.wikipedia.org/wiki/Lagrange_multipliers_on_Banach_spaces
Infinite‑horizon problems under periodicity constraint
経済学の数学理論を極限まで抽象化し、たった1つの数理理論に帰着させるとするならば、それは「最適化理論」に集約できる。
経済学のほぼすべての分野は、次のような「何らかの目的を最大化(または最小化)する」問題に帰着される。
消費者は、予算制約のもとで効用(Utility)を最大化するように選択を行う。
max_x U(x) s.t. p ⋅ x ≤ I
企業は、費用を最小化しつつ利益を最大化するように生産量を決定する。
max_q Π(q) = R(q) - C(q)
(q =生産量, R(q) =収益関数, C(q) =費用関数)
市場全体が最適な状態に達するには、需要と供給が均衡する価格を決める必要がある。
∑D_i(p) = ∑S_j(p)
経済全体の成長を最適にするため、社会的厚生を最大化する動学的最適化問題になる。
max_C_t ∑_{t=0}^{∞} β^t U(C_t)
(C_t = 消費, β = 割引因子)
投資家は、リスクを最小限に抑えつつ期待リターンを最大化するように資産を配分する。
max_w E[R] - λ Var(R)
(w =ポートフォリオ配分, E[R] = 期待リターン, λ =リスク回避度)
経済学のほぼすべての理論は、何らかの「最適化問題」に帰着する。
したがって、すべての経済学の数学理論を1つにまとめるなら、「最適化理論」に統一される。
もし「もっと抽象化できるのでは?」と思ったら、変分法や制約付き最適化(カルマンフィルターやハミルトニアンなど)にも一般化できる。
むしろ物理系の人の方がよっぽど簡単に入っていけるように思いますが。おそらくパターン認識とかデータマイニングとかそういう分野の方だと思いますが、物理やってた人は多いですよ。物理の人は統計力学やってるから色々計算方法のノウハウもわかってるし、エントロピーをはじめ、統計量を「物理量」として具体的なイメージと共に体でわかってるからとても強いと思うんですけれど。
どうもあなたのバックグラウンドがよくわからない。
まぁ基本的な線形(偏)微分方程式をフーリエ級数等の直交系で展開して解析するくらいなら余裕だけど、それだけじゃどうにもならないんですよ。統計的予測だってパラメトリック分布で最尤推定するくらいならいいけど、隠れマルコフモデルを変分ベイズ法で扱うなんて話まで半年でできるほど頭良くないんです。
それだけわかってるなら変分ベイズ法なんて難しいことは少しもないように思うけれど。所詮、統計的モデルを推定してるだけの話だし、変分法ってのはパラメータが無限次元になっただけだと思えばいい(実際そうだが)んだから。
そんなのは管理職になって技術上の第一線を離れてからでいいと思うけれど。
資金の流れがわからなければ投資はできないし、
投資なんてする必要ないでしょう。せいぜい国債でも買っておけばいい。金融工学の入門書を読んでみた感想としていうのだけれど、理論にぶち込むべきデータを収集するだけでも大変だし、あの理論はだいぶ仮定が乱暴なので現実に合わせようと思えばその都度の手修正が必要だし、いずれにしても素人が下手に手出しをすると火傷するだけだと思った。あんまりそんなに何でもかんでも手を出して器用貧乏にならない方がいいと思いますよ。