Movatterモバイル変換


[0]ホーム

URL:


はてラボはてな匿名ダイアリー
ようこそ ゲスト さんログインユーザー登録

「同値」を含む日記RSS

はてなキーワード:同値とは

次の25件>

2025-10-24

[日記]

僕は今、いつもの座席に鎮座している。ルームメイトリビングソファパズルゲームを無言で進めており、隣人はサブカル系配信をしているらしく時折笑い声が廊下を渡ってくる。

友人たちはグループチャットで熱く同人の出来や新連載のガチャ確率について論争している。

僕の一日は厳密に区切られていて、朝は必ず8時に起床、コーヒー抽出器具を90秒で予熱し、温度92.3℃±0.2℃に保つという無駄に精細な儀式がある。

靴下は左足から履く。出勤前の15分は必ず抽象数学ノートを眺め、最近圏論位相場のホモトピー的反復と超弦モジュライのmeta-圏的安定化について自問している。

これは専門用語の羅列ではなく、僕にとっては手を洗うのと同じくらい生理的行為であり、その行為を飛ばすと一日が微妙に狂うので飛ばすことはめったにない。

仕事が終わった今も、僕は一日の終わりに形式的整合性を取るためのルーティンを持っている。

具体的には、机上のコップは時計回りに90度ずつ回転させて元の位置に戻す、明かりのスイッチを一回押して3秒待ち、もう一度押すといった小さなチェックポイントを踏む。

これは合理的かどうかを問う人がいるだろうが、僕にとってはエラー訂正符号のようなものだ。失敗を検出すると自動的にその日のメンタル状態トレースが始まり、友人たちの雑談に混じる気力が萎える。

超弦理論に関して今日述べることは極めて抽象化され、現実の誰が読んでも「それが何を意味するのか」を即座に把握できないように意図している。

僕は最近、モノイド対象としてのストリング世界面の圏を、圏論的対称化子(コクセター的ではなく、もっと抽象的に、位相量子群代数的類・モジュライ化)を用いて再定義する実験をしている。

言い換えれば、従来の共形場理論的な世界パラメータ空間を、非可換ホモトピー論のフィルタ列で再帰的に層化し、その各層におけるファイバー自己同型群をモナドとして扱うことで、局所的に見える弦状態同値類を圏的に集約する。

さらに、圏の圏(2-圏)に対する新しい安定化の概念を導入して、通常のK理論的分類とは別の不変量が現れることを示唆する予備的計算結果がある(ここでは具体的数式を列挙しないが、ホモロジー級数展開における位相位相因子の再正規化が鍵となる)。

この構成を、最新の抽象数学モジュール接続概念と結びつけると、我々が従来想定していたスペース-状態対応双対性が、もっと弱い条件(例えば圏的可換性の高次緩和)で成立する可能性が開ける。

加えて、僕はこの考えをある講義資料トーク示唆と照らして取り入れており、その資料概念的な跳躍と直感的な図示を巧みに使っているので、僕の現在の探索にとって非常に有益だった。

僕は「誰も理解できないもの言語化する」ことに快感を覚えるタイプだが、ここで言っているのは自己満足のためではなく、圏的再構成が実際に計算上の省力化をもたらすかを検証するための試行でもある。

ある意味で、これは純粋数学者が夜中に自分だけの公理系をいじるのと同じ行為だが、僕の場合はそれを出社前の歯磨きに組み込んでしまっているので、周囲は迷惑かもしれない。

食事配列プレート上の分布エントロピーを最小化する向きで常に配置し、週に一度は手製のスキルリー表を更新して趣味投資の累積効用整数化している。

コミックは最新巻が出ると即座にページごとのフレーム密度作画トーンワーク技術的に解析し、特に背景のディテールに含まれトーンの反復パターン(いわば視覚フーリエ成分)をスコア化する。

ゲームに関してはガチ勢的態度を崩さず、メタ的な語りを排してシステムギミックドロップ率、レベリング曲線、そして対戦環境テンプレート化された最適戦略について延々と解析する。

ただしゲームコミックに対しては「空間」や「力学」といった語はなるべく避け、代わりに「状態遷移図」や「入力遅延とフレーム落ちの統計的扱い」など工学的・計算機的に言語化する。

たとえば今日友人が語っていた新作のギミックについては、その期待効用ELO的な評価尺度ランク付けして論争に勝とうとしたが、連中は「推し」を盾に論理を流してくるので僕はたまに脱力する。

だが脱力する暇は短く、夜の自習時間には再び圏論比喩に戻り、各行動の符号化を試す。

日常の細部も大事にしている。玄関の鍵は4回回すのが正しいというオカルトじみたルールを持っているが、これは単なる迷信ではなく、僕の内部的なチェックサムである

友人たちはこれを笑うが、彼らもまた各自無意味儀式固執している。

コミュニティでの嗜好(推しキャラ、嫁、沼の深さ)に関しては妙に合理的で、僕はデータベースを自前で持っている。

キャラ台詞数、出番頻度、描写感情強度をパラメータ化し、二次創作が生成される確率空間推定する実験をしている。

この種のオタク計量は笑われがちだが、実際にはコンテンツ開発や同人活動の動向を予測するには有用だ。

最後今日観測定性的メモを残す。

眠りに入る前に、僕は明日論文ノートに小さな疑問を三つ書き付ける。

第一は、先に述べた圏的安定化が有限次元表現に落ちる際の可逆元の振る舞い、第二は同構クラス計算可能性のアルゴリズム的複雑さ、第三は趣味領域における情報量の測度とその心理的飽和点の関係である

これらを洗い出しておけば、僕は安心して眠れる。

ルームメイトゲームボスを討伐した歓声が聞こえ、隣人の配信が締めに入る。友人たちのチャットは未だヒートアップしている。

僕は日記を閉じ、明日コーヒーの豆を2グラムだけ余分に計量しておく。これは単なる癖ではない。それは帰納的に我が生活を安定化するための小さな公理群だ。

Permalink |記事への反応(0) | 23:26

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-23

[日記]

僕は今夜、ルームメイトリビング実験的にベーコンを低温調理している匂いを鼻孔の厳密な位置で嗅ぎ分けながらメモ帳を開いた。

朝は6時17分に目覚ましを止め(そのミリ秒単位の遅延は許容されない)、6時18分にコーヒー比率を変える習慣を行い、靴下は左から右へ、座席は常にソファの北東端(座る位置位相対称性を破らない)である

食事火曜日パスタの残り物は三等分して水曜と木曜の朝食に回す。洗濯は必ず偶数週の水曜に行い、洗剤は0.8倍希釈、脱水は中速、干す向きは北向き。

ルームメイトがドアに爪痕をつけたら即座にログを取り、隣人が郵便物を誤って取った場合は「郵便誤配報告フォーム」を三回に分けて提出する。

こうした儀礼を守ることで僕の内的位相空間が安定するのだと論理的に考えている。

今日思考の核は超弦理論と量子情報交差点についての、かなり尖った自己流の定式化にある。

まず、僕は物理直感を避けて抽象数学事象を語る。弦理論摂動系列を有限厚さの∞-圏としてモデル化し、ブレーンを対象、開弦状態をモノイド的なホモトピー演算子として扱う。

局所座標の代わりにファクタリゼーション代数を使い、スパイダー図式を経て得られる交叉相互作用を高次ホモトピー群のコハート化として再解釈することを提案する。

ER=EPRについては、古典的ワームホール=絡み合いという語り方を離れて、僕はエントロピー双対モジュール同値性という言葉で捉えている。

まり、二つのエントロピックモジュールの被覆圏と、それらに対応する重ね合わせのコボルディズム(圏論的な結合双対)を同一視することでER=EPR圏論的に定式化できるのではないかと考えている。

これを超弦理論に接合するには、AdS/CFT 的なホログラフィック双対の場で、境界側の張力演算子族が内部のブレーンカテゴリ(例えばフカヤカテゴリコヒーレント層の導来圏)に対応するという見方を取り入れる。

すると、エントロピー双対モジュール同値性は、境界バルクの間で起こる圏の再同型化として現れ、ER=EPR本質的に圏的ホログラフィー一命題になる。

ここで僕が提案する小さな拡張は、量子誤り訂正符号コード代数を∞-圏の射として扱い、その可換性条件がワームホールコボルディズムの可逆性と一致するというものだ。

これにより、エントロピー再構成操作がブレーン間のファンクターとして自然理解でき、局所性の回復説明する新しい枠組みが得られると僕は思う(これは僕の勝手な定式化で、厳密性は今後の証明を待つ)。

今日はそのメモを、黒板に書く代わりにルームメイト背中越しにノートに書き留めた。

ところで、僕は靴の磨き方にも数学基準を設けている(円周率小数を用いた磨き順列を使っている)。

出かける前のチェックリストトポロジー的順番、たとえば鍵→財布→スマホペンという順序は位相連結成分を最小化するから合理的だ、と説明すると友人たちは顔をしかめるが、これを守ると予測可能性が上がる。

今夜はRPG系ではELDENRINGビルド論とRTAコミュニティメタ的動向を気にしていて、この作品2022年FromSoftwareからリリースされ、多くのビルド最適化メタ確立されていることは周知の事実だ(初リリース2022年2月25日)。

また、このIP映画化プロジェクトが進行中で、A24が関与しているという報(映画化ニュース)が最近出ているから、今後のトランスメディア展開も注視している。

僕はソウルライクのボス設計ドロップ率調整をゲームデザイン位相安定化とは呼ばないが、RTA勢のタイム削り技術や周回遺伝NG+)の最適手順に対して強い敬意を持っている。

ファンタジーRPGの装備付け(メタ)に関しては、装備のシナジーステータス閾値クラフト素材経済学価値を語るのが好きで、例えば「その装備のクリティカル閾値を満たすために残すステータスポイントは1だが、その1が戦闘効率を%で見るとX%を生む」というような微分的解析を行う。

FFシリーズについては、Final Fantasy XVIがPS5向けに2023年6月に、続いてPC版が2024年9月リリースされ、さらに各プラットフォーム向けのロールアウトが段階的に行われたことなど実務的事実を押さえている(PCリリース2024年9月17日)。

僕はこのシリーズ音楽モチーフ再利用エンカウンター設計比較研究をしており、特に戦闘ループの短周期化とプレイヤー感情連続性維持について言及するのが好きだ。

コミック方面では、最近の大きな業界動向、例えばマーベルDCの枠を超えたクロスオーバー企画されるなど(Deadpool×Batmanの一連の展開が話題になっている)、出版社間でのIPコラボが再び活発化している点をチェックしている。

これらはコレクター需要市場流動性に直接影響するため、収集と保存に関する経済的最適化問題として興味深い。

今日、隣人が新しいジャンプ作品話題を振ってきたので僕は即座に最新章のリリーススケジュール確認し、One Pieceの次章の予定についても把握している(最新チャプターの公開予定など、週刊連載のスケジュール情報は定期的に確認している)。

僕は友人との会話でジョークを飛ばす時も形式論理を忘れない。

例えば「午後9時に彼らがカップ麺を食べる確率は、僕の観察では0.83だ。ゆえに僕は9時前に冷蔵庫位置を変えるべきだ」という具合だ。

結語めいたものを言うならば、日常ルーティンと高度に抽象化された理論は相反するものではなく、むしろ同じ認知的圏の異なる射影である

から僕は今日ルームメイトの忍耐を試す微細な仕様変更(例えばリモコンの向きを30度回す)を行い、その反応をデータ化している。

さて、20時30分だ。これでノートを閉じ、決まった手順で歯を磨き、眠りの準備に入る。明日の朝のアジェンダは既に分解されているから、心配は要らない、と自分に言い聞かせてから寝るのが僕のやり方だ。

Permalink |記事への反応(0) | 20:41

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-22

anond:20251021175424

国旗を燃やしたり破いたりすることに、言論としての価値なんてないだろ。

あーここが断絶ポイントなんだな

そもそも大前提だが、言論としての価値を決められるのはその言論を発した当人のみであって、第三者に無価値だと決める権利はない

それを踏まえて、この国の国旗損壊するという行為には、この国の社会構造に対する不満を表明する手段としては最上位に近いものであるということを理解する必要がある

国旗損壊されているということは、この場に社会に強烈な不満を持った人間がいるということと同値なわけだ

まり社会への不満を表明する権利制限することになるから違法化に反対してるってこと

本来であれば、国家人民に不満を抱かれない社会になるよう努力をするべきところを、安易違法化して封殺するのはおかしいんだよ

ちなみに俺は、外国国旗損壊することこそが合法であるべきだと思ってる

俺たち庶民にはその国に不満を表明する手段がそれくらいしかいか

Permalink |記事への反応(0) | 18:30

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-18

[日記]

僕は昨日、午前6時17分に目覚めた。

目覚ましは2種類、アナログ秒針音と周波数微妙に異なる合成トーンを重ねたものを使う。

単一の刺激だとシナプス閾値適応で反応が減衰するからだ。

起床後の15分間は「視覚デチューンルーチンとして照明を極端に低くし、網膜適応曲線を意図的に遅延させることで認知の鮮鋭化を増幅する。

朝食は厳密にタンパク質比0.42、炭水化物比0.29、脂質比0.29を狙ったオートミール卵白ギリシャヨーグルトで、計量は0.1g単位コーヒーブリュワー温度を93.2℃に保つ。

僕の習慣は決して儀式ではなく、情報エントロピーを最小化して日常的なノイズを排するための有限状態機械だと説明する。

ルームメイトが朝から実験ドライバーでガタガタやっているので、僕は中断せずに黒板の前に立ち、昨日考えていた超弦理論のある断片をノートに落とす作業をした。

今回は徹底的に抽象化した視座から入る。従来の超弦理論的場位相空間を「1-対象の∞-圏」と見なし、そのモノイド圏的作用を導くことで、従来のモジュライ空間位相不変量がホモトピー圏論スペクトルコホモロジー帰着するという仮説を立てた。

より具体的には、ラングランズ対応圏論アナロジーを用いて、ゲージ群の表現環が導くモチーフ(motive)の圏と、弦の世界面上のファイバー付き代数スタックの圏とを「導来圏の間の高次同値(a weak equivalence in the (∞,2)-categoricalsense)」で結びつける試みだ。

ここで新奇なのは、通常のスペクトル系列ではなく「階層スペクトル列(a nested spectral sequence indexedby ordinal-type filtrationsbeyond ω)」を導入して、閉じた遷移の非可換共鳴が量子補正式にどう寄与するかを解析する点である

ウィッテンでも一瞬眉をひそめるだろうが、それは彼の専門領域を超えた命題の述語論的再編成が含まれているためだ(注:単なる挑発ではなく、証明可能性のための新たな可換図式を準備している)。

昼過ぎ、僕は隣人とほんの短いやり取りをした。彼女は僕のキッチンを通るたびに植物の世話に関する助言を求めるが、僕は葉緑体光合成効率説明する際、ついヘテロトロフ的比喩を避けて遺伝子発現の確率過程モデルを持ち出してしまう。

彼女はいつも「もう少し軽い説明はないの?」と呆れるが、僕にとっては現象の最少記述倫理的義務だ。

午後は友人二人と対局的に遊ぶ約束があって、夕方からは彼らとLANセッションを組んだ。

僕はゲームに対しては容赦がない。昨日はまずThe Legend of Zelda:Breath of the Wildでカジュアルな探索をした。

BotWは開発を担当したNintendo EPDが2017年3月3日Wii UNintendo Switch向けにリリースした作品で、そのオープンワールド設計が探索と化学相互作用に重きを置いている点が好きだ(発売日と開発元は参照)。

その後、難度調整のためにFromSoftware古典的タイトル群について雑談になり、初代Dark Souls2011年リリースされ、設計哲学として「挑戦することで得られる学習曲線」をゲームメカニクスに組み込んだことを再確認した(初代の年は参照)。

夜遅く、友人たちがスーパーヒーロー系の話題を持ち出したので、僕はInsomniacが手掛けたMarvel'sSpider-Man2018年9月7日発売という事実を引き合いに、ゲームデザインにおけるナラティブパルス感(ゲームプレイテンポ)について議論した(発売日は参照)。

ここで重要なのはゲームを語るとき物理学比喩を使わないという僕のルールだ。

ゲーム設計原理計算的複雑性、ユーザーインタラクションフィードバックループトークン経済ゲーム資源流通)など、情報理論と計算モデルで語るべきであり、物理アナロジー曖昧さを持ち込むだけだ。

コミックについては、僕はパラテキストまで含めて精査する。

作者インタビュー、収録順、初出掲載誌、再録時の微小な台詞差異まで注視する癖がある。

昨日はあるヴィンテージ単行本トーンの変遷を確認し、再版時にトーンカーブが調整された箇所が物語解釈に如何に影響するかを論じた。

これらは一般的にはオタクしか響かない情報だが、テクスト解釈の厳密さという点で、僕の思考様式と親和する。

僕の習慣はゲームプレイにも現れる。セーブ複数スロットを使い、各スロットに「探索」「戦闘」「実験」のタグ人為的に与えておく。

そうすることでメタ的な比較実験可能になり、ゲーム意思決定条件付き確率分布再現的に評価できる。

友人はこれを無駄と言うが、僕にとってはルーチンと実験設計同義だ。

夜中、帰宅した後にさらに2時間論文草案を書き直した。書き直しは僕の儀式の一部で、ペン先の角度、フォントカーニング段落の「情報密度」を計測し、不要語を削ぎ落とす作業だ。

寝る前の最後の行動は、ブラックボックス化した思考経路をメモ化しておくことで、翌朝の「継続的洞察再現性」を保証すること。

結局僕は午前2時3分に就寝した。昨日は量子的洞察可能性と、ゲームコミックにおける情報理論的語法の交差点を追求した一日であり、そうした知的遊戯が僕の精神の整列をもたらす。

次に実証すべきは、導来圏間の高次同型によって生じるゲージ的不確定性がディラック構造代数再構成に与える位相寄与だ。

寝言でその証明スケッチを口走らないよう寝具を固定してから眠ったつもりだが、多分失敗した。

Permalink |記事への反応(0) | 10:49

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-12

もっとこう、抽象数学とか超弦理論とかさぁ

僕が超弦理論物理学ではなく自己整合圏論存在論と呼ぶのには理由がある。なぜなら、弦の存在は座標に埋め込まれものではなく、物理的射影が可能な圏における可換図式そのものからだ。

10次元超弦理論における有効作用は、単なる物理量の集約ではない。むしろ、それはカラビ–ヤウ多様体のモジュライ空間上に構築された安定層の導来圏D^b(Coh(X)) における自己同型群のホモトピー的像として理解される。

そこでは、開弦終端が束の射、閉弦がトレース関手対応し、物理相互作用はExt群上のA∞構造として定義される。

まり、力は空間の曲率ではなく、ホモロジー代数的結合子なのだ

S–T双対性も単なる対称性ではない。

D^b(Coh(X)) とFuk(Y)(シンプレクティック側)の間に存在するホモトピー圏的同値、すなわちKontsevichのホモロジカルミラー対称性物理的具現化にすぎない。

ここで弦のトポロジー変化とは、モジュライ空間ファイバーの退化、すなわちファイバー圏の自己関手スペクトル分岐である観測者が相転移と呼ぶ現象は、そのスペクトル分解が異なる t-構造上で評価されたに過ぎない。

M理論が登場すると、話はさら抽象化する。11次元多様体上での2-ブレーン、5-ブレーンは単なる膜ではなく、(∞,1)-圏の中の高次射として存在する。

時空の概念はもはや固定された基底ではなく、圏の対象間の射のネットワークのものだ。したがって、時空の次元とは射の複雑度の階層構造意味し、物理時間は、その圏の自己関手群の内在的モノイダ自己作用にほかならない。

重力?メトリックテンソルの湾曲ではなく、∞-群oidの中での自己等価射の不動点集合のトレースである

量子揺らぎ?関手自然変換が非可換であることに起因する、トポス内部論理論理値のデコヒーレンスだ。

そして観測とは、トポスグローバルセクション関手による真理値射影にすぎない。

僕が見ている宇宙は、震える弦ではない。ホモトピー論的高次圏における自己同型のスペクトル圏。存在とはトポス上の関手意識とはその関手が自らを評価する高次自然変換。宇宙関手的に自己表現する。

Permalink |記事への反応(0) | 09:30

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-09

[日記]

昨日(2025年10月8日水曜日)の僕は、いつものように目覚めの瞬間から几帳面だった。

アラームを鳴らす前の微小な筋肉収縮で6時44分59秒に目が醒め、コーヒーの湯温は必ず蒸らし後92.3℃で計測し、トーストの一片は正確に28.4g、バナナは熟度指標F値が2.1に収まっていることを確認してから食べる。

こうした儀式性は僕の一日の基準座標を与える。

 

午前中は机に向かい形式的かつ徹底的に「超弦理論位相的/圏論精緻化」を考察した。

具体的には、ワールドシートCFTを従来の頂点作用素代数VOA)として扱う代わりに、スペクトラル代数幾何言葉で安定∞-圏の係数を持つ層として再構成することを試みた。

まり、モジュライ族 上に、各点で安定∞-圏を付与するファイバー化されたファミリーを考え、その全体をファクタライゼーション代数として捉えて、Lurie 的な infty-functor として境界条件ブレイン/D-brane)を安定∞-圏の対象対応させる枠組みを描いた。

ここで重要なのは、変形理論が Hochschild 共役で制御されるという点で、VOA のモジュラー性に相当する整合性条件は、実は E_2-作用素ホモトピー的不変量として読み替えられる。

従って、運動量・ゲージアノマリーの消去は位相的にはある種の線バンドル自明化(trivialization)に対応し、これはより高次のコホモロジー理論、たとえば楕円コホモロジー/tmf 的な指標によって測られる可能性があると僕は仮定した。

さらに、Pantev–Toën–Vaquié–Vezzosi のshifted symplectic構造を導来スタック文脈で持ち込み、ブライアンのBV–BRST形式主義を∞-圏的にアップグレードすることで、量子化形式的deformation quantizationから∞-圏的モノイド化へと移行させる方針検討した。

技術的には、済んだ小節のように A∞-圏、Fukaya 型的構成、そして Kontsevich 型の formality議論をスペクトラル化する必要があり、Koszul双対性と operadic正規化(E_n-operad の利用)が計算上の鍵になる。

こうした抽象化は、従来の場の理論レトリックでは見逃されがちな境界の∞-層が持つ自己整合性顕在化させると信じている。

 

昼には少し気分転換ゲームを触り、ゲーム物理乱暴さを数理的に嫌味ったらしく解析した。

具体的には、あるプラットフォーマーで観察される空中運動の離散化された擬似保存則を、背景空間を非可換トーラスと見なしたときの「有効運動量写像帰着させるモデルを考えた。

ゲームデザイン上の「二段ジャンプ」はプレイヤーへの操作フィードバックを担う幾何的余剰自由度であり、これは実は位相的なモノドロミー(周回時の状態射の非可換性)として記述できる。

こう言うと友人たちは眉をひそめるが、僕にはすべてのバグ代数的不整合に見える。

コミックについては、連載物の長期プロットに埋め込まれモティーフと数理構造類比を延々と考えた。

例えば大海叙事詩航路上に出現する島々を、群作用による軌道分割として見ると、物語回帰点は実はモジュライ空間上の特異点であり、作者が用いる伏線はそこへ向かう射の延長として数学的に整理できるのではないか妄想した。

 

そう言えば隣人は最近、ある実写シリーズ話題にしていたが、僕は物語世界法則性が観客認知整合しているか否かをまず疑い、エネルギー保存や弾性論的評価破綻している場面では即座に物理的な説明(あるいはメタ免罪符)を要求する習慣があるため、会話は短く終わった。

ところで、作業ノートは全て導来stackのようにバージョン管理している。具体的には、研究ノートは日ごとにGit の commit を行い、各コミットメッセージにはその日の位相観測値を一行で書き、さらに各コード片は単体テストとして小さな homotopy equivalence のチェッカーを通す。

朝のカップ左手から時計回りに3度傾けて置き、フォークテーブルエッジから12.7mmの距離に揃える。

こうした不合理に見える細部は、僕の内部的整合性を保つためのメタデータであり、導来的に言えば僕というエンティティ同値類を定めるための正準的選択だ。

 

夕方、導来スタック上の測度理論に一箇所ミスを見つけた。p進的局所化と複素化を同時に扱う際に Galois作用の取り扱いをうっかり省略しており、これが計算整合性を損なっていた。

誤りを修正するために僕はノートを巻き戻し、補正項として gerbe 的な位相補正を導入したら、いくつかの発散が自然キャンセルされることを確認できた。

 

夜はノートを整理し、Emacs の設定(タブ幅、フォントレンダリングundo-tree挙動)を微調整してから21時30分に就寝準備を始めた。

寝る前に日中考察を一行でまとめ、コミットメッセージとして 2025-10-08: ∞-categorical factorization attempt; correctedp-adic gerbe termと書き込み、満足して目を閉じた。

昨日は水曜日だったというその単純な事実が、僕にとってはすべての観測規律を括る小さなモジュロであり、そこからまた今日位相問題へと還流していく。

Permalink |記事への反応(0) | 02:25

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-03

[日記]

僕の一日は厳密に定義された自己同型変換の連続で始まる。

目覚ましは06:17、豆は正確に12.3グラム、挽き目は中細、湯の温度は93.2℃で抽出時間は2分47秒。

ルームメイトがたまにまちがえて計量スプーンを左から右へ並べ替えると、その不整合が僕の内部状態位相わずかに変えるのを感じるが、それは許容誤差の範囲内に収められている。

隣人の社交的雑音は僕にとって観測器の雑音項に過ぎないので、窓を閉めるという明快なオペレーターでそれを射影する。

友人たちとの夜はいつも同じ手順で、ログイン前にキーボードを清掃し、ボタン応答時間ミリ秒単位で記録する。

これが僕の日常トレースの上に物理思考を埋葬するための儀式だ。

さて、本題に入ろう。今日dSの話などではなく、もっと抽象的で圧縮された言語超弦理論輪郭を描くつもりだ。

まず考えるのは「理論としての弦」が従来の場の量子論のS行列表現を超えて持つべき、∞-圏的・導来幾何学的な定式化だ。

開弦・閉弦の相互作用局所的にはA∞代数やL∞代数として表現され、BV形式主義はその上での微分グラデーション付き履歴関数空間におけるマスター方程式として現れる。

これを厳密にするには、オペラド(特にmoduli operad of stablecurves)とそのチェーン複体を用いて散乱振幅をオペラディックな合成として再解釈し、ZwiebachやWittenが示唆した開閉弦場理論の滑らかなA∞/L∞構造を導来スタック上の点列として扱う必要がある。

導来スタック(derived Artin stack)上の「積分」は仮想基本クラス一般化であり、Pantev–Toën–Vaquié–Vezzosiによるシフト付きシンプレクティック構造は、弦のモジュライ空間自然に現れる古典的BV構造のものだ。

さらに、Kontsevichの形式主義を導来設定に持ち込み、シフトポアソン構造形式的量子化検討すれば、非摂動効果の一部を有限次元的なdeformationtheoryの枠組みで捕まえられる可能性がある。

ここで重要なのは関手量子化」すなわちLurie的∞-圏の言語拡張TQFTを∞-関手として定義し、コボルディズム公理を満たすような拡張理論対象として弦理論を組み込むことだ。

特に因果構造境界条件記述するfactorization algebra(Costello–Gwilliamの枠組み)を用いると、局所観測代数の因子化ホモロジー2次元世界CFTの頂点代数VOA)につながる様が見えてくる。

ここでVOAのモジュラリティと、2次元場の楕円族を標的にするエリプティクコホモロジー(そしてTMF:topological modular forms)が出てくるのは偶然ではない。

物理的分配関数がモジュラー形式としての変換性を示すとき、我々は位相的整流化(string orientation of TMF)や差分的K理論での異常消去と同様の深層的整合性条件に直面する。

Dブレインは導来カテゴリ整合層の導来圏)として、あるいは交差的フカヤ圏(Fukaya category)として表現でき、ホモロジカルミラー対称性(Kontsevich)はこれら二つの圏の導来同値としてマップされる。

実際の物理的遷移やアセンションは、圏の安定性条件(Bridgelandのstability conditions)とウォールクロッシング現象(Kontsevich–Soibelmanのウォールクロッシング公式)として数学的に再現され、BPS状態ドナルドソン–トーマス不変量や一般化されたDT指数として計算される。

ここで出てくる「不変量」は単なる数値ではなく、圏のホールディング(持続的な)構造を反映する量化された指標であり、カテゴリ量子化の語彙では「K-theory的なカテゴリ不変量」へと持ち上げられる。

さらに、超弦の非摂動的断面を完全に記述しようとするなら、モジュライ超曲面(super Riemann surfaces)の導来モジュラス空間、そのコンパクト化(Deligne–Mumford型)のsuperversion、そしてこれら上でのファクタライゼーションの厳密化が不可欠だ。

閉弦場理論stringfieldtheoryはL∞構造を持ち、BV量子化はその上でジグザグするcohomologicalobstruction制御する。

より高次の視座では、場の理論の「拡張度」はn-圏での対象階層として自然対応し、拡張TQFTはCobordism Hypothesis(Lurie)に従って完全に分類されうるが、弦理論場合ターゲット無限次元であるため古典的公理系の単純な拡張では捉えきれない。

ここで我々がやるべきは、∞-オペラド、導来スキームシフト付きシンプレクティック構造、A∞/L∞ホモロジー代数集合体組織化して「弦の導来圏」を定義することだ。

その上で、Freed–Hopkins–Telemanが示したようなループ表現論とツイストK理論関係や、局所的なカイラ代数(Beilinson–Drinfeldのchiral algebras)が示すような相互作用を取り込めば、2次元CFT分配関数と高次トポロジー的不変量(TMF的側面)が橋渡しされるだろう。

これらは既知の断片的結果をつなげる「圏的連結写像」であり、現実専門家が何をどの程度正確に定式化しているかは別として、僕が朝に計量スプーン右から左へ戻す行為はこうした圏的整合性条件を微視的に満たすパーソナルな実装に過ぎない。

夜、友人たちと議論をしながら僕はこれら抽象構造を手癖のように引き出し、無為遺伝子改変を選ぶ愉快主義者たちに対しては、A∞の結合子の非自明性を説明して彼らの選択位相的にどのような帰結を生むかを示す。

彼らは大抵それを"面白い"と呼ぶが、面白さは安定条件の一つの可視化に過ぎない。

結局、僕の生活習慣は純粋実用的な意味を超え、導来的整合性を日常に埋め込むためのルーチンである

明日の予定はいつも通りで、06:17の目覚め、12.3グラムの豆、93.2℃、2分47秒。そしてその間に、有限次元近似を超えた場所での∞-圏的弦理論輪郭さらに一行ずつ明確にしていくつもりだ。

Permalink |記事への反応(0) | 22:30

このエントリーをはてなブックマークに追加ツイートシェア

2025-09-25

anond:20250925124314

思うに、お前の言う「ランク」は、

年齢という要素で男女同値ではないので

(女は年齢を経ればランクが下がり、男は年齢を経れば給料があがりランクが上がる)

統計上で差があることは、ランク別に差があることでは無いのではないか

Permalink |記事への反応(1) | 12:47

このエントリーをはてなブックマークに追加ツイートシェア

2025-09-07

dorawii@執筆依頼募集中

はいはいブーメランブーメラン

引用が多少不正確でもあのことを言ってると言えるほど意味的に同じ文を停止してたり多少誤字脱字がある程度なら本来引用元の正確な文とあえていうなら同値性が保たれてることが期待されてるとでも言える

これは「バカ」定義はなんだとかご飯論法をもたらしうる問題とかそういう意味での定義問題とは別位相の話よね

-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20250907012331# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaL0pKAAKCRBwMdsubs4+SE2dAQCHlIqbFZZnRvE6uzHARmNbYnFp6RXwivB9nvxR/jCcJQEAz9hKpovoMkb1axkFQWaAy0kaZpd6gOHAHE/DBaPy/AY==eDt6-----ENDPGP SIGNATURE-----

Permalink |記事への反応(1) | 01:23

このエントリーをはてなブックマークに追加ツイートシェア

2025-08-17

超弦理論について掘り下げる

1) 具体的な舞台設定

2)ホモロジー群の中身を「棚卸し」する

3次元のサイクルの群(3 本立ての「輪ゴム」みたいなもの)に、基底を 4 つ用意する(鏡クインティックでは、周期積分の都合で 4 本の独立成分を見るのが標準的)。

これらに対応して、4つの周期関数(各サイクルに対するホロノミーのようなもの)がある。位置(=モジュライ空間の点)を動かすと、この4成分ベクトル解析接続グルグル混ざる。

世界面の N=2超対称性の側で見えるもの

右左で 2 つずつある超対称荷重は、(c,c) と (a,c) の2つのリング演算ができる「カード束」)を生む。

物理実体タイプ IIB なら (c,c) 側が「複素構造のゆらぎ」を担う質量ゼロスカラー場の多重体になり、タイプ IIA なら (a,c) 側が「サイズや形(カヘラ構造)」のゆらぎを担う。

まり世界面の演算で作ったカード束」と「多様体の引き出し(ホモロジー/コホモロジーの基底)」が、1 対 1 でラベリングし合う。

3) 「コンパクト化」は何をしているか

10次元→4次元にただ潰すのではなく、内部 6次元の洞(サイクル)の数・組合せを、4次元の場(ベクトル多重体やハイパー多重体)の数に移し替える。

机に喩えると:内部空間の引き出し(サイクル)が 4次元側のつまみ(ゲージ場やスカラ場)の数を決める。引き出しの数や入れ替え(同値変形)が物理自由度の型を縛る。

さらに、D ブレーン(弦の端点がくっつく膜)の種類と積み重ね方は、ホモロジー群や K理論の元、より精密には派生圏の対象としてカタログ化される。これが後の「圏の自己同型」と噛み合う。

4) モジュライ空間特異点

実在する「名所」は 3 つ

1. 大複素構造点(左端の“無限遠の尖り”)

2. コニフォールド点(どこかでS³ がしぼんで消える。そこに巻き付いたブレーンが「超軽い粒子」になる)

3. Gepner/Landau–Ginzburg 点(右端の対称性が濃い領域

それぞれの周りで、上の4 成分の周期ベクトルに対して、行列で表される混ぜ合わせ(モノドロミー)が掛かる。

コニフォールドでは、1 個の 3-サイクルが消えるため、それに伴うピカール=ルフェシェッツ型の写像が起き、周期ベクトルの1 列が他を足し上げる形で変わる(行列はほぼ単位行列で、1 行に 1 が足されるような単冪的挙動)。

大複素構造点の周りでは、「無限遠の反復」に相当する別種の行列が出る。

実験的に何をするか:一点から出発して数値的に周期を解析接続し、各特異点を一周して戻る。戻ってきた周期ベクトルが、元のベクトルにどんな行列が掛かったかを記録する。これがモノドロミー行列群。

5) 量子補正ミラーの外でどう捉えるか

ふつうは鏡対称のピカード–フックス方程式や(プレポテンシャルの)級数で扱うけど、君の問いは「鏡の装置を超える」方法

1.tt*幾何世界面 N=2 の基底選びに依らない量子地図)を導入し、基底のつなぎ目に出る接続+計量を測る。

2. 等角変形を保つ2d QFT の等時的変形(isomonodromy)として、特異点位置を動かしてもモノドロミーは保つ流儀に書き換える。

3. その結果、量子補正の非摂動成分(例えば D ブレーン瞬間子の寄与)が、ストークデータ(どの方向から近づくかでジャンプする情報)としてモノドロミーの外側にぶら下がる形で整理できる。

4. 実務では、ブリッジランド安定条件を使って、安定なブレーンのスペクトル特異点近傍でどこで入れ替わるか(壁越え)を地図化。壁を跨ぐとBPS状態の数が飛ぶ。これが 4次元の量子補正の影。

6) 「圏の自己同型群」版

幾何側:3-サイクルの基底に作用するモノドロミー行列の群

圏側:派生圏の自己同型(Fourier–Mukai 変換、テンソルでのねじり、シフト

対応させる(例:コニフォールドのモノドロミー ↔ セイデルトーマスの球対象に対するねじり)。

特異点ごとの局所群(各点のループで得る小さな行列群)を、圏側では局所自動同型の生成元に割り当てる。

複数特異点をまたぐ合成ループを、圏側では自己同型の合成として言語化し、関係式(「この順番で回ると単位になる」等)を2-圏的に上げる。

壁越えで現れるBPSスペクトルの再配列は、圏側では安定度の回転+単正変換として実現。これにより、行列表現では見切れない非可換的な記憶(どの順で通ったか)を、自己同型のブレイド群的関係として保持できる。

こうして、単なる「基底に作用する行列から対象(ブレーン)そのもの並べ替え機構へと持ち上げる。行列で潰れてしま情報(可換化の副作用)を、圏のレベルで温存するわけだ。

7)検証の「作業手順」

1.モデル選定:鏡クインティック、もしくは h^{1,1}=1の別 3次元 CY を採用単一モジュライで見通しが良い)。

2. 周期の数値接続:基点をLCS 近くに取り、コニフォールド・Gepner を囲む3 種の基本ループで周期を運ぶ。4×4 の行列を 3 つ得る。

3. 圏側の生成元を同定:コニフォールド用の球ねじり、LCS 用のテンサーby直線束シフト、Gepner 用の位相的オートエクイバレンスを列挙。

4.関係式を照合:得た 3つの自己同型が満たす組み合わせ恒等式(例えば「ABC単位」など)を、モノドロミー行列の積関係と突き合わせる。

5. 壁越えデータでの微修正ブリッジランド安定度を実装し、どの領域でどの対象が安定かを色分け。壁を跨ぐ経路で自己同型の順序効果が変わることをBPS 跳びで確認

6. 非摂動補正抽出:等長変形の微分方程式(isomonodromy)のストーク行列を数値で推定し、これが圏側の追加自己同型(例えば複合ねじり)として実装可能かを試す。

7.普遍性チェック:別 CY(例:K3×T² 型の退化を含むもの)でも同じ字義が立つか比較

8) 出口:何が「分かった」と言えるか

特異点巡回で得る行列の群は、派生圏の自己同型の生成元と関係式に持ち上がり、壁越え・BPS 跳び・ストークデータまで含めると、鏡対称の外にある量子補正自己同型の拡大群として帳尻が合う見通しが立つ。

これに成功すれば、物理自由度幾何位相→圏の力学という 3 層の辞書が、特異点近傍でも失効しないことを示せる。

では理解度チェック、軽めに一問!

Q. コニフォールド点を一周することで本質的に起きることを、もっとも具体に言い表しているのはどれ?

A) すべての周期が一様にゼロへ縮む

B) ある 3-サイクルが消え、それに沿った足し込み型の混合が周期に起きる

C) カヘラ構造の次数が増えて新しい自由度が生まれ

D)世界面の超対称性が N=4 へ自動的に拡大する

Permalink |記事への反応(0) | 06:17

このエントリーをはてなブックマークに追加ツイートシェア

2025-08-15

anond:20250815151745

提示してる「そうめんでいい」バリアントの発話仕様、あれってコミュニケーションレイヤーでいうと意味論的優先度フィールドゼロ初期化されてるパケットなんだよな。

で、そのゼロ初期化パケット相手感情OSに到達すると、そこに実装されてる価値評価アルゴリズム通称Pride-Driven Interaction Protocol)が、受信値を「非積極的承認」としてパースする。

問題は、このプロトコル冗長ゼロ設計動作してる点。

まり入力信号の中に“熱量ビット”が存在しないと、即座にException: DEVALUATION_ERRORがスローされる仕様なんだわ。

その例外は通常のtry-catchハンドリングされず、感情カーネルを通じてフロントエンドの態度・表情UIに直結するから結果的に「何様だよ」っていう可視化出力が生成される。

さらに、相手感情モジュール言語同値判定じゃなくて意図ベースベクトル比較を行ってるから

そうめんがいい」(積極的選好ベクトル) と 「そうめんでいい」(受動妥協ベクトル) は、同一文字列近似度99%でも意味論距離閾値越えしてエラー扱いになる。

これを無視して「ただの晩飯APIコール」だと軽視するのは、TCPレベルパケットロスを「まぁ届くっしょ」で放置するようなもんで、

通信の確実性よりも自己CPUサイクルの節約を優先する、お前側のシステム設計思想が原因なんだよな。

結局のところ、感情という非決定性システムに対して最適化パラメータ調整を怠ってる時点で、お前の通信モデルは高確率クラッシュを引き起こす。

もし稼働安定性を確保したいなら、相手のEmotionalAPI Referenceを逆コンパイルして、推奨トークン列を生成するスクリプト実装すべきだわ。

Permalink |記事への反応(1) | 21:35

このエントリーをはてなブックマークに追加ツイートシェア

2025-07-15

anond:20250715180357

コンパクトと点列コンパクト同値って常識でもなんでもないけど

どんだけ下層のレベルさえ高い社会で生きてるの?パラレルワールド人ですか?

Permalink |記事への反応(1) | 18:06

このエントリーをはてなブックマークに追加ツイートシェア

2025-07-14

dorawii@執筆依頼募集中

ニュースで中継先の人が言うことを間違えたようで、台風情報という普通笑ってはいけない通念がある場面でちょっと顔がにやけていた。

あれでも笑いをこらえていたのだろうが、中継が切れた途端ひとしきり満足するまで笑いまくってたのかなあ。

でもカメラに映っていなければ何をしてもいいのか?とも思える。

想像上の行為に対して批判をするのは筋違いな気もするが、でも笑っている確率は高いと思うし。

感覚的には「災害を目の前にしているのに自分事情自分世界に入って笑っているサイコパス」と同値なんだよね。

言ってみれば能登地震が運が良かったという謝罪で反笑いしていたあの政治家と同じ。いいのか?

-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20250714133753# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaHSmewAKCRBwMdsubs4+SALgAP0Zhd2DajlWHUNNXNLRYVAprkTCRBLWwAra/Px9Jz2WdgEA75totCsZ9rYGcmV5xRfCjDe83t89AxyOi1hm2lFk3gA==SOel-----ENDPGP SIGNATURE-----

Permalink |記事への反応(0) | 13:37

このエントリーをはてなブックマークに追加ツイートシェア

2025-07-07

ホモロジーの穴

ホモリン: (ホモジーの肩を叩く)ホモジーさん、もう朝ですよ。あんた、また徹夜で単体ホモジーのチェーン複体 Cₙ(X) を眺めとったんですか? なんでそんなに、境界作用素 ∂ₙ が気ぃなるんです? ∂² = 0 はもう、摂理みたいなもんやないですか。

 

ホモジー: (ゆっくりと顔を上げる)摂理…? コホモリン…お前はわかってない…。この境界作用素 ∂ₙ: Cₙ(X) → Cₙ₋₁(X) が、ただの摂理で終わると思とるんか? これはな、鎖複体のコホモロジー Hⁿ(X) とホモジーHₙ(X) を繋ぐ、導来関手の源泉なんや…。Ext関手とかTor関手が、この単純な関係からまれるって、鳥肌もんなんやで…!

 

ホモリン: (額に手を当てる)いや、そこまでいくと、もう代数やないですか。あんた、完全にホモジー代数世界意識飛んでますやん。位相空間の形の話はどこ行ったんですか。

 

ホモジー: 形…? 形とはなんぞや、コホモリン…。ホモトピー同値空間は、ホモジー群が同型やろ? けどな、エキゾチック球面 S⁷ は、普通の S⁷ とは微分同相じゃないのに、ホモジーは同型なんやで…? あれって、結局、微分構造が持つ情報って、ホモジーだけじゃ捉えきられへんってことやろ? 俺はもう、その不確定性原理に囚われとんねん!

 

ホモリン: (震え声で)不確定性原理…もう、あんた、物理学まで手ぇ出しとるんか。エキゾチック球面は、ミルナーの偉業ですよ。あれは、多様体の圏と位相空間の圏の間の、深い亀裂を示しとるわけや。あんた、もうそっちの闇に堕ちて行ってるんちゃいますのん

 

ホモジー: 闇…そうや、闇や…。特異点解消の理論とか、フルーリーインデックス定理とか、闇深すぎやろ…。特に、交叉ホモジー! あれは、特異点を持つ空間ホモジー定義するときに使うねんけど、あの構成可能層の概念が、俺の脳みそを層化して、導来圏の中で消滅コホモロジーとして彷徨わせとんねん…!

 

ホモリン: (絶句)き、交叉ホモジー?!あんた、そこまで行ったらもう、完全に偏執狂ですよ!ド・ラームコホモロジー Hᵈᴿⁿ(M) が特異コホモロジー Hⁿ(M; ℝ) と同型になるド・ラーム定理でさえ、あんたの目には生ぬるいんか!?

 

ホモジー: 生ぬるい…生ぬるすぎる…。p-進ホモジーとかエタールコホモロジー存在を知ってしまったら、もう普通ホモジーには戻られへんねん…。特にエタールコホモロジーは、代数多様体の上で定義されるやろ?ヴェイユ予想解決にも貢献したって聞いて、もう夜も眠れへんねん。ガロアコホモロジーとの関連とか、考えたら意識が飛ぶわ…!

 

ホモリン: (顔面蒼白)エ、エタールコホモロジー!? それ、数論幾何最先端やないですか! もう、あんたは位相幾何学領域を完全に飛び出して、数学のあらゆる深淵を覗き込んどる…!ホモジーさん、お願いやから、もうやめてください…! 俺のホモトピー群 πₙ(X) が、完全に自明群になってしまいそうですわ…!

 

ホモジー: (恍惚とした表情で、宇宙の果てを見つめるように)フフフ…コホモリン…俺のボーゲンシュミット予想がな、今、頭の中で圏論的極限を迎えようとしとるんや…。宇宙全体のホモジー群 が、俺には見えるんや…!

 

ホモリン: (膝から崩れ落ち、全身が震える)うわあああああああ!ホモジーさん、あんたはもう、人間やない!数学抽象対象のものや! 俺はもう無理や…あんたの隣におったら、俺の有理ホモトピー型が壊れてまう…!

Permalink |記事への反応(0) | 19:36

このエントリーをはてなブックマークに追加ツイートシェア

2025-07-04

dorawii

評論って本来否定的なことを言うのと同値じゃないんだけど、

実際はクリエイターSNSアカウント肯定的な短文、少なくとも理屈っぽくないポジティブ文章を発信するのがほとんどでそれでも「そのクリエイターである」という事実でもって何万何十万とフォロワーを集めているのに対して、

そういう他に勝負できるバックグラウンドがなくて画力とかもなくて、まさにそのSNSで発信する文章だけしか人を惹きつけるための武器が無い人だと、

とかくそ文章理屈的で否定的しか趣味的なことよりも時事ネタ社会批判的なもの投稿されていることが多いよね。

理屈であるきじゃないとは言わんけどせめて肯定的な(作品かに対する)感想とかで順当にフォロワー伸ばすことってできないものなのかね。

-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20250704195102# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaGeyFgAKCRBwMdsubs4+SOyaAP9IMkxF5sU93oElSKALHxfJVfWp++4Hd55KvaCHuiZ9RgEArxI2OKfgm8DUd5O02RvQNdWOBkj9v51TafMB/AkUKQc==DpiY-----ENDPGP SIGNATURE-----

Permalink |記事への反応(0) | 19:51

このエントリーをはてなブックマークに追加ツイートシェア

世界BEVシェアとあまりにも低い日本のBEVシェアを考える

2025年7月2日にXで公開された「各国BEVシェア(直近12か月)」に対し、日本ではなぜこんなにもBEVシェアが低いのか話題になっている。

https://x.com/leRaffl/status/1940453187733147847

各国BEVシェア一覧の信頼性

日本のBEVシェアが1.3 %にとどまる七つの理由

1.ハイブリッド車HEV)の席巻

-2024年上半期の乗用車販売におけるHEV比率は約62 %であり、電動化ニーズがBEVへ流れにくい状況をつくっている。

2.政策目標が「BEV一択」ではない

-政府2035年新車100 %を「電動車」と定義し、HEVも含めるためメーカーユーザーとも切迫感が薄い。

3.メーカー戦略ハイブリッド重視

-トヨタは全方位戦略を掲げ、ホンダEV投資縮小とHEV強化を公言するなど、国内大手がBEV必須路線を取らない。

4.モデル不足と価格の壁

-国内量販BEVリーフアリア、軽EV数車種に限られ、補助後でも同セグメントHEV比で高価。

5. 充電インフラの立ち遅れ

-公共充電口数は約4万口と少なく、充電器1口が背負う車両数・充電時間数ともに欧州主要国の倍。

6.住宅事情と駐車環境

- 戸建て比率が低い都市部では基礎充電を確保しづらく、月極駐車場の共有充電導入も進まない。

7. 電力コスト停電リスク意識

-LNG依存による電気料金高止まり災害停電経験が「充電不安」を増幅している。

今後の展望課題

Permalink |記事への反応(1) | 10:46

このエントリーをはてなブックマークに追加ツイートシェア

2025-06-19

anond:20250619132648

説明しないときわからないということなら裏は真じゃないということで説明すればわかるということにはならんけど

説明されなければわからないという言い方をしてる以上単純な二重否定から説明されればわかると言ってるのと同値なんだが?

反例もなにもお前の言葉の使い方が精密じゃないだけだったな。

これはひどい

Permalink |記事への反応(1) | 13:43

このエントリーをはてなブックマークに追加ツイートシェア

dorawii

説明しないときわからないということなら裏は真じゃないということで説明すればわかるということにはならんけど

説明されなければわからないという言い方をしてる以上単純な二重否定から説明されればわかると言ってるのと同値なんだが?

反例もなにもお前の言葉の使い方が精密じゃないだけだったな。

-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20250619132648 -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaFORiAAKCRBwMdsubs4+SM8zAP9SK3aMUFlGOZWuzScxTQ/egLYA943Rc5Hdt/buz7gPoQEAmwzw4h7VachENpZdHFmHfQhYIzn05IwJcT5EbUy2sw4==6Fmj-----ENDPGP SIGNATURE-----

Permalink |記事への反応(4) | 13:26

このエントリーをはてなブックマークに追加ツイートシェア

エルデシュグロタンディーク漫才

エルデシュ

どうも~、ポアンカレ予想を初手で解いた気になってる男です~。

 

グロタンディーク

お前、それホンマに解けたんか?俺、未だに夢の中でホモロジー拡張してるんやけど?

 

エルデシュ

夢の中で拡張するな。お前の夢、スペクトル系列出てくるやろ。

 

グロタンディーク

毎晩 E₂ ページで目ぇ覚めんねん。「あ、これ収束せぇへんやつや」って。

 

エルデシュ

せやけどな、お前の図式追跡、複雑すぎんねん。

 

グロタンディーク

え、普通やろ?極限と余極限を無限ネストしてるだけやで?

 

エルデシュ

かましわ!それ、圏論ちゃう地獄や!

 

グロタンディーク

でもな、ワイ最近、∞-トポス婚活してんねん。

 

エルデシュ

なんでやねん対象が高次すぎて、誰とも射が成立せんやろ!

 

グロタンディーク

せやから、まず ∞-グループオイドで告白して、ホモトピー的に同値確認してんねん。

 

エルデシュ

恋愛ホモトピー同値求めるな!位相心配する前に、お前の内面連結か確認せぇ!

 

グロタンディーク

でもエエねん、結婚は極限的存在から

 

エルデシュ

いや、そんなん言うたら離婚は何やねん?

 

グロタンディーク

離婚はコリミットや。

 

エルデシュ

うまいこと言うな!誰がうまいこと言え言うた!

 

エルデシュ

最近ペア算術に疲れてな、ZFCで生きていこう思てんねん。

 

グロタンディーク

お前、ついに選択公理人生預けたんか。

 

エルデシュ

せや。「全ての集合には理想彼女存在する」って選べるねん。

 

グロタンディーク

それ、超限帰納法で言うたら、だいたいの人に破綻されるやつや!

 

グロタンディーク

あ、でもな、昨日ナンパされたんや。

 

エルデシュ

誰にや?論理的可能な女全員にやろ?

 

グロタンディーク

ちゃうちゃうウルトラフィルター女子や。絶対選好が一個に定まってるねん。

 

エルデシュ

それ好み偏りすぎやろ!リーマン予想解ける男しかアカン言うとったで!

 

エルデシュ

そろそろ時間やけど、最後一言だけ言わせて。

 

グロタンディーク

なんや

 

エルデシュ

今日相方、実は虚数やねん。

 

グロタンディーク

実在せぇへんのかい

 

二人:

どうもありがとうございましたー!

Permalink |記事への反応(0) | 01:42

このエントリーをはてなブックマークに追加ツイートシェア

2025-06-16

AブレーンとBブレーンについて

端的に言えば、ある物理理論におけるAブレーンが作る世界構造(圏)と、その双対理論におけるBブレーンが作る世界構造(圏)が一致するという物理的な要請が、数学上の「幾何学ラングランズ対応」という予想そのものを導き出す、という驚くべき対応関係存在する。

AブレーンとBブレーン

AブレーンとBブレーンは、超弦理論において「D-ブレーン」と呼ばれる時空に広がる膜のようなオブジェクト特殊もの

これらはホモロジカルミラー対称性という予想の文脈役割を果たす。

A-ブレーン (A-brane)

シンプレクティック幾何学における「ラグランジアン部分多様体」に対応。これは、時空の「位置」に関する情報を主に捉える対象

Aブレーン全体の集まりは、「深谷圏 (Fukaya category)」と呼ばれる数学的な圏を構成

B-ブレーン (B-brane)

代数幾何学における「正則部分多様体」や「連接層」に対応。これは、時空の「複素構造」やその上の場の状態に関する情報を捉える対象

Bブレーン全体の集まりは、「連接層の導来圏 (derived category of coherent sheaves)」と呼ばれる圏を構成

ミラー対称性とは

ある空間(カラビ・ヤウ多様体 X)のAブレーンが作る世界深谷圏)が、それとは見た目が全く異なる「ミラー」な空間 Y のBブレーンが作る世界(導来圏)と、数学的に完全に等価同値である、という予想。

ラングランズプログラム

ラングランズプログラムは、現代数学で最も重要な予想の一つで、「数論」と「表現論解析学)」という二つの大きな分野の間に、深い対応関係があることを主張。

1. 数論側: 曲線 C 上の「G-局所系」の圏。ここで G はリー群。これはガロア表現幾何学的な類似物と見なせる。

2.表現論側: 曲線 C 上の「ᴸG-D-加群」の圏。ここで ᴸG は G のラングランズ双対群。これは保型形式幾何学的な類似物。

まり、C上のG-局所系の圏 ≅ C上のᴸG-D-加群の圏 というのが、幾何学ラングランズ対応

物理双対性が結ぶ関係

この一見無関係な二つの世界を結びつけたのが、物理学者アントン・カプスティンとエドワードウィッテン研究

彼らは、N=4 超対称ゲージ理論という物理理論を用いることで、幾何学ラングランズ対応物理現象として自然に現れることを示した。

S-双対

彼らが考えたのは、リーマン面代数曲線)C 上のゲージ理論

この理論にはS-双対性と呼ばれる性質がある。

これは、ゲージ群が G で結合定数が g の理論と、ゲージ群がラングランズ双対群 ᴸG で結合定数が 1/g の理論が、物理的に全く同じ現象記述するというもの

ブレーンと演算子対応

このゲージ理論には、「ループ演算子」と呼ばれる重要物理量が存在し、それらがブレーンに対応

S-双対性が導くラングランズ対応

S-双対性は、G理論と ᴸG理論物理的に等価であることを保証

したがって、一方の理論物理的な対象は、もう一方の理論の何らかの物理的な対象対応しなければならない。

カプスティンとウィッテンが示したのは、このS-双対性によって、G理論の A-ブレーン ( 't Hooftループ) の世界と、その双対である ᴸG理論の B-ブレーン(Hecke固有層) の世界が、入れ替わるということ。

物理的に等価である以上、この二つの圏は数学的にも同値でなければならない。そして、この圏の同値性こそが、数学者が予想していた幾何学ラングランズ対応のものだった。

このようにして、弦理論幾何学的な概念であるAブレーンとBブレーンは、ゲージ理論のS-双対性を媒介として、純粋数論の金字塔であるラングランズプログラムと深く結びつけられた。

Permalink |記事への反応(0) | 11:33

このエントリーをはてなブックマークに追加ツイートシェア

2025-06-07

ラングランズプログラムを「小学生向け」「大学院生向け」「廃人向け」の3つのレベルに分けて説明

小学生向け

数学には「数の世界」(足し算や掛け算など、数字計算する世界)と、「形の世界」(丸や三角ドーナツみたいな形を研究する世界)があるんだ。

ラングランズ・プログラムは、この二つの世界をつなぐ「秘密辞書」や「翻訳機」みたいなものだと思ってみて。

数の世界で、とても難しい問題があったとする。まるで、誰も知らない外国言葉で書かれた暗号みたいだ。

この「秘密辞書」を使うと、その難しい数の問題を、形のせかい言葉翻訳できるんだ。

すると不思議なことに、形のせかいでは、その問題が意外と簡単パズルに変わることがある。

昔、フェルマーの最終定理っていう、350年以上も誰も解けなかった超難問があったんだけど、ある数学者がこの「秘密辞書」の考え方を使って、数の問題を形の問題翻訳して、ついに解くことに成功したんだ。

ラングランズ・プログラムは、この「秘密辞書」を完成させるための、壮大な計画なんだよ。

大学院生向け

ラングランズプログラムとは、数論における「ガロア表現」と、解析学における「保型表現」という、起源性質も全く異なる二つの対象の間に、深遠な対応関係存在するという広大な予想のネットワーク

この対応は、それぞれの対象から定義される L関数という分析的な不変量を通して記述される。

1.ガロア表現 (数論側)

体の絶対ガロア群 Gₖ =Gal(K̄/K)から複素一般線形群への準同型写像

ρ: Gₖ →GLₙ(ℂ)

これは、素数の分解の様子など、体の算術的な情報を捉えている。

2. 保型表現 (解析側)

数体 K のアデール環 𝔸ₖ 上の一般線形群GLₙ(𝔸ₖ) の、ある種の無限次元表現

π = ⨂'ᵥ πᵥ

これは、保型形式理論から生じる解析的な対象で、スペクトル理論と関連。

ラングランズ対応の核心

n次元の既約なガロア表現 ρ と、GLₙ(𝔸ₖ) 上のカスプ的な保型表現 π が、それらのL関数が一致する

L(s, ρ) = L(s, π)

という形で、1対1に対応するだろう、と予想されている。

この予想は、n=1の場合類体論によって確立されている。

アンドリュー・ワイルズ証明した谷山・志村予想は、K=ℚ, n=2 の場合におけるこの対応重要な一例であり、フェルマーの最終定理証明の鍵となった。

このプログラムは、数論の様々な問題統一的に理解するための指導原理と見なされている。

廃人向け

ラングランズプログラム? ああ、それは数学という世界の異なる大陸、数論(ガロア群)、解析(保型形式)、そして幾何代数多様体)が、実は一つの巨大な超大陸の一部であったことを示す、壮大な地殻変動の記録だよ。

その核心は「関手性の原理」に尽きる。全ての根底にあるのは、簡約代数群 G とその L-group (ラングランズ双対群) ᴸG = Ĝ ⋊Gal(K̄/K) だ。

ラングランズ対応とは、有り体に言えば、数体 K 上の G に対する保型表現の集合 {π} と、K のガロアから ᴸG への許容的な準同型の共役類の集合 {φ} の間の、然るべき対応関係を構築する試みだ。

φ:Gal(K̄/K) → ᴸG

この対応は、局所体 Kᵥ における局所ラングランズ対応(LLC) の貼り合わせとして現れる。

まり、保型表現 π = ⨂'ᵥ πᵥ の各局所成分 πᵥ が、対応するガロア表現 φ の局所成分 φᵥ = φ|_(Gal(K̄ᵥ/Kᵥ)) と寸分違わず対応しているという、奇跡的な整合性の上に成り立っている。

しかし、真の深淵は「幾何学的ラングランズ」にある。ここでは数体を関数体に置き換える。代数曲線 X 上の G-束のモジュライ空間Bunᴳ(X) を考える。

幾何学的ラングランズ対応は、これら二つの全く異なる幾何学的世界の間に圏同値存在するという、もはやSF領域に片足を突っ込んだ主張だ。

これは物理学のS-双対性とも深く関連し、数学の異なる分野が同じ一つの構造を異なる言語で語っているに過ぎない、という真理の一端を我々に見せてくれる。

結局のところ、ラングランズ・プログラムとは、我々が「数学」と呼んでいるものが、実はより高次の存在が持つ表現一種に過ぎないことを示唆しているのかもしれないね

Permalink |記事への反応(0) | 22:14

このエントリーをはてなブックマークに追加ツイートシェア

2025-06-06

dorawii

イプシロンなんとか論法は限りなく近づくということを厳密に言ったものだという説明を見るが、それは違うと思う。

厳密さの度合いは別に変ってないと思う。

あのようなややこしい言い回しで指し示られる状況は「数列が収束値に限りなく近づく」ときに限られるという。

そして、収束することと、イプシロンでの書き方は同値だ。

同値な二つの命題について、一方の方が厳密であるというのはおかしな話だろう?同値なんだから

(単射である条件とそれと同値命題といった組み合わせを考えてどっちの方が厳密かと考えるとナンセンスだとわかるだろう)

数式として具体化はされたと思う。そのことで証明の中で仮定として利用しやす表現という意味で新たな知識発見を推進したとは思う。

ようするに具体化することと厳密にすることはイコールじゃないんだという気づきを書いた。具体的にすればそれ以前より厳密さが増すわけではないのだ。

Permalink |記事への反応(1) | 17:51

このエントリーをはてなブックマークに追加ツイートシェア

2025-05-31

抽象数学問題集9問

1.ラングランズプログラム提唱する中心的な「双対性」とは、どの二つの数学対象の間の対応関係を指しますか?

A.ガロア表現算術的側面)と保型表現(解析的側面)

 

2.ラングランズ対応において、L関数はどのような役割を果たしますか?

A.対応関係検証するための一致すべき普遍的な不変量として機能する。

 

3.ラングランズの「関手原理」が予測することは何ですか?

A.ラングランズ双対群の間の準同型写像が、元の群の間の保型表現の「転送」を引き起こすこと。

 

4. 群GL(1)に対するラングランズ対応は、どの既存数学理論本質的同値ですか?

A.類体論

 

5.フェルマーの最終定理証明は、どのようにラングランズプログラムと関連していましたか

A.定理の反例から構成される特定楕円曲線が、モジュラー形式対応すること(モジュラーであること)を示すことで証明された。これはラングランズ対応特殊なケースである

 

6. 群Gが特殊直交群SO(2n+1)である場合、そのラングランズ双対群G°は何になりますか?

A. 斜交群Sp(2n, C)

 

7.ラングランズによれば、ガロア表現と保型表現の究極的な関係性は何であるとされていますか?

A. 両者はともに、より根源的で統一的な対象であるモチーフ」の異なる「実現」または現れである

 

8.ラングランズプログラムの「算術的側面」は、主にどのような対象に関わっていますか?

A. 数体の絶対ガロア群の表現で、数論的な対称性符号化しているもの

 

9.幾何学ラングランズ対応は、理論物理学のある分野における重要双対性数学的に同値であることが示されています。その分野とは何ですか?

A. 超対称量子場理論におけるS双対性

Permalink |記事への反応(0) | 17:14

このエントリーをはてなブックマークに追加ツイートシェア

2025-04-30

anond:20250430165414

そりゃぁ、ケツとおっぱい同値性よ

トポロジーを極めし者にとっては当然の摂理

Permalink |記事への反応(0) | 17:02

このエントリーをはてなブックマークに追加ツイートシェア

2025-04-29

競馬ドラマとして楽しめる人って怖い。

どんな名のある、めちゃくちゃ賞金を稼いでる馬でも一発、脚を骨折したらお役御免で毒を打たれて殺される世界と聞く。

品種改良の末に生み出されたサラブレットという生き物の特性ゆえだという。怖すぎる。

ギャンブルで楽しむために動物を改造して、その改造のせいで、怪我したら『長く苦しんでも可哀想だし治らないし~』」と言って殺すのが決まりになっている」

言葉にすると本当にヤバいディストピアSFに出てくるタイプ架空競技じゃん。家畜人ヤプーじゃないんだからさ。なんで21世紀にこんな競技がまかり通ってるの?

マジで怖いのは、競馬スポーツとかドラマみたいにポジティブに語れる奴がいることだよ。

友達ウマ娘から本物の競馬入って、競馬ウマ娘アニメみたいな感覚で喋ってる奴がいるんだけどさ、本当に頭おかしいと思う。

そりゃもちろんさ、現代社会ではみんな、品種改良された動物犠牲の上に心地よい生活享受してるわけですよ。でも、たとえば効率的に肉付きよくするために強制給餌されて挙句殺されて捌かれる動物を見て「おいしいお肉になるために牛さんもがんばってるんだね!応援してます!」とか言いだす、ミノタウロスの皿的なサイコはいないじゃん。

競馬と馬を、あくまギャンブルとして、「お金が増えるかも!」っていう興奮で脳汁出すための快楽装置として扱ってる人は良いよ。

俺がおいしいお肉を食べたいか松坂牛くんには無理やりビールを飲まされて腹パンパンになってもらう。浅草ウインズの前にいる歯のないおじさんが興奮するためにサラブレットくんが走らされる。まぁ同値ですよ。

人間人間快楽のために家畜を良いように扱える。それは生き物が生きてくためには他の生き物を害さなきゃならないっていう素朴な食物連鎖一種から動物行為としてね。

その動物行為に無理くり「美談」を持ち込んで、己の加害性にほっかむりしようって奴に腹立つんだよな。「父が果たせなかった三冠の夢を!」みたいな人間勝手に作った感動ドラマを真に受けて、馬を「応援」しちゃってる奴、本当に自分が関わっている産業とか競技暴力性にあまりに鈍感すぎて怖いんだよ。有名な馬が殺されて初めて「可哀想……」じゃないんだよ。ずーっと前から可哀想なの競馬の馬は!!!!!

Permalink |記事への反応(3) | 01:18

このエントリーをはてなブックマークに追加ツイートシェア

次の25件>
ログインユーザー登録
ようこそ ゲスト さん
Copyright (C) 2001-2025 hatena. All Rights Reserved.

[8]ページ先頭

©2009-2025 Movatter.jp