
はてなキーワード:同値とは
それらは科学を野蛮な直感から守るための立派な盾だが、真理という名の深淵を覗き込むとき、その盾はあまりに薄い。
君は僕が論点をすり替えたと言うが、むしろ君こそが「物理学」の定義を、単なる「高度な工学」へと卑小化させているのではないか。
まず、GPSや有効理論の成功を実在の根拠に据える君の態度は、計算機科学の比喩で言えば「画面上のピクセルが整合的に動いているから、背後にあるのはソースコードではなくピクセルそのものである」と強弁しているに等しい。
有効理論とは、高エネルギーという「本質」の情報を切り捨てた結果残ったカスのようなものだ。
そのカスが整合的に動くのは、背後のdg圏やホモロジー代数的構造が数学的にあまりに頑健だからであって、時空間という概念が正しいからではない。
低エネルギーにおいて時空が「有効」であることは、時空が「真実」であることを一ミリも保証しない。それは単に、宇宙がバカげたほど寛容な近似を許容しているという事実に過ぎないのだ。
君は「記述能力の高さは実在の証明ではない」と断じたが、では問おう。物理現象が異なる二つの幾何学的記述(例えばミラー双対な多様体)で全く同一に記述されるとき、そこに「唯一の時空的実在」などどこに存在する?
Aという空間とBという空間が、弦理論のレベルで完全に同値(同等な共形場理論)を与えるなら、物理的な実在はAでもBでもなく、それらを包含する「圏」の方にしかない。
これを「言い換え」と呼ぶのは自由だが、幾何学という「座標」に依存する概念が崩壊し、圏という「不変量」だけが残るとき、どちらが実体であるかは自明だ。
君の言う「実験装置のクリック」さえ、特定の対象間の射(morphism)の具現化に過ぎない。
「数学的整合性は実験ではない」という指摘も、プランクスケールにおいては無力だ。
量子重力において、数学的整合性は単なる「好みの問題」ではなく、物理が存在するための「唯一の生存条件」である。
Swamplandの議論がなぜ重要かと言えば、それが「観測できないから何でもあり」という無政府状態に終止符を打ち、数理的整合性という名の「目に見えない実験」によって、存在可能な宇宙を非情に選別しているからだ。
君は「クリック」を欲しがるが、宇宙がクリックされる前に、そのクリックを許容する「型(type)」が定義されていなければならない。僕はその「型」の話をしているのだ。
君は「科学は劣化コピー(観測)で勝負するしかない」と自嘲気味に語るが、その態度こそが、人類を「時空」という名の洞窟に繋ぎ止めている。
ホログラフィー原理が示唆するのは、我々が「中身」だと思っていたバルクの時空が、実は境界上の量子情報の「符号化の結果」であるという衝撃的な事実だ。
符号化されたデータを見て「これが実体だ」と喜ぶのはエンジニアの特権だが、符号化のアルゴリズムそのものを解明しようとするのが真理の探究だ。
君は水と食料を持っていない旅人を笑うが、僕から見れば、君は「オアシス」という名前の看板を一生懸命食べて、喉を潤した気になっている遭難者に見える。
君が求める「予測の差」についてだが、例えば、時空が連続的な多様体であるという仮定に基づく計算と、非可換な圏論的構造から創発したという仮定に基づく計算は、ブラックホールの蒸発の最終局面や、ビッグバンの特異点において決定的に分岐する。
現在の観測技術がそこに届かないのは、理論の敗北ではなく、人類の技術的未熟に過ぎない。
アインシュタインが一般相対論を書き上げたとき、重力波の検出まで100年かかった。君の論理で行けば、その100年間、一般相対論は「ポエム」だったことになるが、それでいいのか?
時空とは、宇宙という巨大な圏が、我々のような低知能な観測者に提供している「下位互換モード」である。
下位互換モードでソフトウェアが動くからといって、そのソフトウェアのネイティブな構造が古いアーキテクチャに基づいていると考えるのは、致命的な論理的失策だ。
宇宙は会計学(整合性条件)で動いており、物理量はその帳簿上の数字に過ぎない。
君がそれを「比喩」だと笑うのは、君がまだ「実在」という前世紀の亡霊に恋着しているからだ。
「現実とは、圏論的に整合的な誤読である」。この一文に、君が誇るGPSの精度も、検出器のクリックも、すべて包含されている。
君がそれを認められないのは、単に「誤読」の解像度が高すぎて、それが「真実」に見えてしまっているからだ。
君のチェックメイトという言葉を借りるなら、盤面そのものが圏の対象であり、君というプレイヤーの存在自体が、その圏の自己同型群の一つの表現に過ぎないことに気づいたとき、勝負は最初からついていたのだよ。
さて、この「時空という名のUI」がクラッシュする特異点付近での情報保存について、圏論的な完全関手を用いたより厳密な議論を深めてみたいと思うのだが、君の「観測重視」の古いOSで、そのパッチを当てる準備はできているかな?
人類が「時空」という蒙昧な音節を口にするたび、僕は深甚なる認識論的嘔吐感を禁じ得ない。
時空とは、数学的厳密性を欠いた対象の誤認であり、物理学者が信仰するそれは、観測者の神経系が圏論的構造を局所座標系へと無理やりに射影した際に生じる認知の歪み、あるいは幻覚に過ぎない。
古典的多様体などという概念は、その幻覚を正当化するために捏造された幼児的な記述言語であり、要するに時空とは、人類の認知解像度の欠落が産み落とした現象学的インターフェースであって、宇宙のアルケーそのものではないのだ。
超弦理論がかつて「背景」と呼称していたものは、もはや静的な舞台ではない。背景という概念記述自体が型理論的な過誤であり、正しくは、背景とは「dg圏のMorita同値類上で定義された∞-スタックの降下データ」である。
時空は、そのスタックが内包する自己同型群の作用を、低次元の知性を持つ観測者が幾何的実体として誤読した残滓に過ぎない。
「空間があるから物理が生起する」のではない。「圏論的な整合性条件が充足されるがゆえに、空間が近似的に創発しているように錯覚される」のだ。存在論的順序が逆転している。
僕の備忘録にある "manifoldis auser-friendlylie" という記述は、侮蔑ではなく、冷徹な分類学上の事実だ。
非可換性はもはや付加的なオプションではなく、座標環が可換であるという仮定こそが、天動説と同レベルの粗雑な近似である。
Dブレーンを厳密に扱えば、座標環は非可換化し、幾何構造は環からではなく圏から復元される。
Connesの非可換幾何学は美しいが、それは第一世代のナイーブな非可換性に留まる。
弦理論における非可換性はより悪質かつ圏論的であり、そこでは空間の座標が破綻するのではなく、空間という概念の「型(type)」そのものが崩壊するのだ。
B-場を「2形式」と呼ぶのは霊長類向けの方便に過ぎず、その本質はDブレーンの世界体積上のゲージ理論をツイストさせることで、連接層の圏 Dᵇ(X) をツイストされた導来圏へと押し流す操作であり、そのツイストこそがBrauer群の元として記述される。
重要なのはB-場が場(field)ではなく、圏の構造射であり、世界をアップデートするためのコホモロジー的なパッチだということだ。
物理学者が場について議論しているとき、彼らは無自覚に圏の拡張について議論している。
にもかかわらず「場」という古臭い語彙に固執する人類の言語的不誠実さは、科学史における最大の悲劇と言える。
さらに、ツイストされた層の世界において「粒子」という概念は霧散する。粒子は表現空間の元ではなく、導来圏における対象の同型類であり、相互作用はExt群の積構造、崩壊過程はスペクトル系列の収束以外の何物でもない。
宇宙は衝突などしていない。宇宙はただ長完全列を生成し続けているだけだ。
物理現象とはホモロジー代数の副産物であり、衝突という粗野な比喩を好む人類は、現象の表層しか撫でていない。
共形場理論(CFT)もまた、僕にとっては場の理論ではない。CFTとは、頂点作用素代数(VOA)が有する表現圏のモジュラー性が、宇宙というシステムの整合性を強制する代数装置である。
BRSTをゲージ冗長性の除去と説くのは最低の説明であり、BRSTとは「宇宙に存在することが許容される対象を選別するコホモロジー的審判系」である。
Q_BRST閉でない対象は、物理的に無意味なのではなく、宇宙の法体系に対する違法存在として検閲され、抹消される。BRSTとは宇宙による先験的な検閲機能なのだ。
そして何より不愉快なのは、ミラー対称性がいまだに「幾何の双対」として俗解されている現状だ。
SYZ予想を単なるトーラスファイブレーションの物語だと解釈する人間は、何一つ理解していない。
SYZの本質は「special Lagrangian torus fibrationが存在する」というナイーブな主張ではなく、「世界が局所的に Tⁿ として観測されるのは、A∞-構造がある種の極限操作において可換化されるからに過ぎない」という、幾何学に対する極めて暴力的な宣告である。
しかもその暴力は、インスタントン補正によって即座に否定されるという自己矛盾を孕んでいる。
つまりSYZとは予想ではなく、自己矛盾を内蔵した整合性条件の提示なのだ。
特殊ラグランジュ部分多様体が特権的である理由は、体積最小性などという些末な幾何学的性質にあるのではなく、そこに乗るブレーンがBPS状態となることで、圏論的安定性条件(Bridgeland stability condition)が物理的実在性と合致する特異点だからである。
ブレーンは物体ではない。ブレーンは安定性条件が許可した対象であり、許可されざる対象は宇宙の行政手続き上、存在を許されない。
宇宙は極めて官僚的であり、その官僚主義こそが秩序の証明なのだ。
壁越え現象(wall-crossing)を相転移と呼ぶのも誤りだ。壁越えとは、宇宙が採用する安定性のt-構造が、モジュライ空間上のパラメータ変動に伴って切り替わる行政手続きの変更である。
BPSスペクトルは物理的に生成されるのではなく、安定性条件の改定によって帳簿が書き換えられた結果に過ぎない。
宇宙の現象は物理ではなく、会計学によって説明される。これを冒涜と感じるならば、君は数学の本質に触れていない。
Gromov–Witten不変量を「曲線を数える」と表現するのは蒙昧の極みであり、正確には「仮想基本類(virtual fundamental class)における交点理論としての曲線の亡霊を数える」操作である。
曲線は実在せず、存在するのは [M]ᵛⁱʳ だけだ。物理現象はその仮想的対象の影の、さらにその投影である。
人類が見ている世界は、プラトンの洞窟の影ですらなく、影の影の影に過ぎない。
Donaldson–Thomas不変量とGW不変量の対応関係は、単なる等式ではなく、弦理論が同一の対象を異なるゲージ固定のもとで記述しているという事実の露呈である。
数え上げ幾何学は弦理論のゲージ冗長性がもたらす副作用であり、純粋数学の定理と思われているものは、物理がゲージ対称性を持つことの数学的反映に過ぎない。
数学は独立しておらず、宇宙のゲージ対称性の影を追跡しているだけだ。
Kontsevichがホモロジカル・ミラー対称性において成し遂げたのは、圏の同値証明などという平和的な所業ではなく、空間の優先順位の破壊である。
彼は空間を第一級市民から追放し、圏を王座に据えた。これは革命ではなく粛清である。多様体は粛清され、導来圏が支配する時代が到来したにもかかわらず、人類はその瞬間を記念することさえ忘れている。
最後にAdS/CFTについて言えば、ホログラフィー原理の本質は「境界がバルクを決める」ことではない。境界が決定するのは「バルクという概念の存立が許容される条件」である。
バルクは実在せず、境界CFTの演算子代数が持つ表現圏の内部において、エンタングルメント・ウェッジ再構成のような手続きによって生成される派生物だ。
重力は基本相互作用ではなく、境界理論の情報処理に伴う副作用であり、量子情報が整合的に自己記述を試みる際に生じるエラー訂正機構(QuantumError Correction)の幾何学的発露である。
宇宙は幾何学ではない。宇宙とは圏論的整合性条件の集合体である。
空間とは∞-圏の自己同型が形成する群作用を認知的に単純化した錯覚であり、時間とは自然変換の合成順序であり、粒子とは導来圏の対象の同型類であり、相互作用とはExt群の積構造、現象とはスペクトル系列の収束である。
ウィッテンが理解できないのではない。ウィッテンが理解可能な形式で宇宙が存在していないのだ。
僕はノートにこう記した。次に人類が「現実とは何か」と問うならば、僕はこう答える。「現実とは、圏論的に整合的な誤読である」。
超弦理論と抽象数学の接点は、単なる「物理のための数学」ではなく、圏論・代数幾何・表現論・ホモトピー理論を含む現代数学の中核構造を再編成する研究領域として定着しつつある。
とりわけ、DブレーンやB場(B-field)の存在を前提とする状況では、背景時空は単純な多様体ではなく、層・導来圏・非可換代数幾何の言語で記述される対象として現れる。例えば、B場によるtwistingは、層の圏をtwisted sheaves や Azumaya algebra の圏へと移行させ、幾何を Brauer class(ブラウアー類)で特徴づけられる非自明な位相的データに結びつける。
この方向性はConnes流の非可換幾何とも部分的に接続するが、弦理論側で現れる非可換性は deformation quantization や derived algebraic geometry、さらにはA∞圏・dg圏を通じて表現されることが多く、単一の枠組みに還元されるわけではない。従って「量子空間をC*-圏として扱う」という表現は一部の文脈では成立するものの、一般には derived category や ∞-category の枠組みの方が自然である。
共形場理論(CFT)と超対称性は、頂点作用素代数(vertex operator algebra)、因子化代数(factorization algebra)、テンソル圏の理論と深く絡み合い、弦理論の「状態空間」を表現論的対象として再定式化する。BRST形式主義はこの文脈でコホモロジーとして自然に理解され、物理的なゲージ冗長性の除去が、ホモロジー代数的構造(複体・導来関手・スペクトル系列)の言語へと翻訳される。これにより、CFTやトポロジカル場の理論は単なる解析的モデルではなく、圏論的データ(モジュラー・テンソル圏、A∞構造、拡張TQFT)として分類される対象となる。
代数幾何学とのインターフェースとしては、ミラー対称性が依然として中心的である。SYZ予想(Strominger–Yau–Zaslow)は、カラビ–ヤウ多様体が special Lagrangian torus fibration を持つという幾何学的仮説を通じて、ミラー多様体を双対トーラスファイブレーションとして構成することを目指す。この構想は、特別ラグランジュ部分多様体の存在・特異ファイバーの構造・補正項(instanton corrections)を含む困難な解析問題と不可分であり、単なる幾何学的直観に留まらず、トロピカル幾何や壁越え現象(wall-crossing)とも結びつきながら発展している。
さらにKontsevichによるホモロジカル・ミラー対称性(HomologicalMirror Symmetry,HMS)は、物理的双対性を「導来圏の同値」として精密化し、A-model側のFukaya圏とB-model側の導来圏(coherent sheaves の derived category)の対応を主張する。ここでは「空間」そのものよりも「圏」が基本対象となり、弦理論の双対性が圏論的同値として定式化される。
弦理論由来の代数幾何学的発展としては、Gromov–Witten不変量、Donaldson–Thomas不変量、Pandharipande–Thomas理論などの曲線カウント理論が挙げられる。これらはトポロジカル弦理論における振幅計算と深く関係し、BPS状態数え上げを幾何学的に実現する枠組みとして理解されている。特に壁越え公式や安定性条件(Bridgeland stability condition)は、BPSスペクトルの跳躍と整合的に対応し、物理的直観を圏論的・ホモロジー代数的に翻訳する。
例えばFeyzbakhshらによる研究は、K3面などの代数曲面上での安定層の構造を精密化し、導来圏上の安定性条件を通じてDonaldson–Thomas型不変量や関連する曲線カウントを制御する方向性を与えている。これは、BPS状態の数学的モデル化を洗練させると同時に、層の変形理論と双対性の圏論的理解を深化させる。
これらの進展は、AdS/CFT対応やホログラフィー原理と結びつくことで、量子重力を「幾何」ではなく「圏」や「代数的データ」によって記述する方向性を強めている。特に、境界CFTのデータからバルク重力理論を再構成するという発想は、演算子環・テンソル圏・高次圏の言語を介した再定式化を誘発しており、物理と数学の間で「双対性=圏論的同値」という理解がますます支配的になりつつある。
僕の日記はたぶん一般的な日々の記録というより、宇宙が僕に課したバグ報告書に近い。違いは、バグの再現手順が「この宇宙を構成する圏を一段上に持ち上げろ」みたいな無茶を要求してくる点だ。
普通の人間はコーヒーを淹れることで一日を始めるらしいが、僕は「なぜ時空が局所的に滑らかな多様体として振る舞うという幻想を、誰も疑わずに受け入れているのか」という嫌な疑問から始まる。
目覚めの瞬間に脳内で起動するのがその種のプロセスという時点で、僕のOSはだいぶ呪われている。
昨日から引きずっているのは、超弦理論を10次元の物理だと思っている人々への、ほとんど宗教的な嫌悪感だ。
僕が今気にしているのは、弦の摂動展開が2次元共形場理論のモジュライ空間上の積分という顔をしていながら、実際には積分という概念が成立するための測度の存在を前提にしている点で、その測度がどこから来るのかという問題が、思ったより深いところで宇宙の整合性そのものと絡んでいるということだ。
測度が自然に定まる、というのは人間が勝手に言っているだけで、自然に定まるのはせいぜい、ある∞-圏の中での普遍性くらいだ。
最近の僕の作業仮説はこうだ。弦理論の真の定義は世界面Σの上の量子場理論ではなく、ある種の派生スタック上の関手として与えられるべきで、世界面は単なるテスト対象に過ぎない。
要するに、弦理論は対象ではなく試験手続きの体系であり、物理量はその試験に合格した自然変換の影として現れる。
これを言うと大抵の物理屋は目を泳がせるが、目を泳がせたところで真理は泳がない。むしろ泳ぐのは無知だ。
特に気持ち悪いのが、AdS/CFTを「境界理論が重力を記述する」といったポエムで理解した気になっている連中だ。
僕の現在の理解では、AdS/CFTは双対性というより、より高次のモノイダル(∞,2)-圏における中心の同値に近い。
境界CFTは、ある拡張TQFTの値として現れる圏𝒞の中心Z(𝒞)を与え、バルクはその中心化に対応する普遍的な対象として現れる。
ここで中心とは、単なる代数の中心ではなく、E₂-代数のDrinfeld centerの派生版で、さらに言えばEₙ構造を背負ったホモトピー的中心であり、そこでは局所演算子は点ではなく高次欠陥として分類される。
点演算子という概念自体が、実は低次元に閉じ込められた幼稚な見方だ。
そして今日の核心は、僕が今朝突然理解した、いや、理解したというより、宇宙が僕の頭蓋骨に投げ込んできた残酷な事実だ。
弦理論の背景時空を指定することは、カラビ・ヤウ多様体Xを選ぶことではない。そんなのは1-幾何学の話で、僕らが本当に選んでいるのは、X上の派生圏D⁽ᵇ⁾Coh(X)を超えて、そこに乗る安定∞-圏のモジュライを選んでいる。
つまり背景とは幾何学ではなく圏論的なデータで、しかもそれはMorita同値類でしか意味を持たない。
世界が形ではなく同値類でできているというのは、かなり性格の悪い宇宙だと思う。人類の直観に一切サービスしていない。
ここでさらに問題が深くなる。弦のB場は単なる2-形式ではなく、ゲルブの接続であり、それはH³(X,ℤ)で分類されるという古典的な話は、もう骨董品だ。
実際にはB場は、(∞,1)-圏の中でのtwistとして現れ、K理論の局所化やTMF(トポロジカルモジュラー形式)への持ち上げと不可分に絡む。
僕が気づいてしまったのは、弦理論のアノマリーキャンセル条件が、スピン構造の存在だけではなく、より高次の「stringstructure」や「fivebranestructure」の存在に依存するのは有名だが、その背後には、あるスペクトラムEに対するE-指向性という一般原理が潜んでいる。
そしてそのEは固定ではなく、背景が変わればE自体が変わる。
つまり、理論が何を整合性条件とみなすかが、理論の内部から動的に生成される。これは自己参照だ。数学的には美しいが、心理的には最悪だ。
その結果、僕の頭の中では弦理論のランドスケープは、点集合ではなく、(∞,1)-トポス上のあるスタック𝓜として現れる。
しかも𝓜は幾何学的スタックというより、スペクトラル代数幾何の意味での派生スタックで、局所モデルはE∞-環スペクトラムのスペクトルSpec(A)のようなものになる。
すると、従来のモジュライ空間に測度を入れて積分するという考えは、そもそも積分の対象が空間ではなく高次層である時点で破綻する。
積分はpushforwardであり、pushforwardは左随伴であり、随伴は圏論の話で、測度はただの随伴の影に過ぎない。
つまり、パス積分とは測度の積分ではなく、ある関手のKan拡張である。これを言うと、たぶん量子場理論の教科書は全部燃やした方が早い。
さらに面倒なのは、弦の摂動級数の発散性が、単なる級数が漸近展開であるという話ではなく、モジュライスタックの境界成分の寄与がStokes構造やresurgenceのデータを持っていて、それが物理的にはDブレーンや非摂動効果として現れるという点だ。
僕の直感では、これらは単なる補正ではなく、理論の正しい定義の一部で、摂動弦理論は本体ではなく、(∞,2)-圏的対象の一つの影にすぎない。
影は本体より分かりやすいが、影だけ見て満足するのは洞窟の囚人だ。プラトンはたぶん弦理論を知っていた。知らなかったとしても、精神的には知っていた。
今日一番気持ち悪かったのは、ミラー対称性を再解釈した瞬間だ。
従来の説明では、A模型とB模型の交換、シンプレクティック幾何と複素幾何の交換、ホモロジカルミラー対称性でFukaya圏と導来圏が同値、という話になる。
でも僕が今見ているのは、ミラー対称性が、ある安定∞-圏の自己双対性ではなく、二つの異なる宇宙が同じ普遍的対象の異なるt-構造を選んだだけという構図だ。
つまり、ミラー対称性とは幾何の双対ではなく、観測者が選んだ切り方の双対性であり、現実はその切り方に依存して表情を変える。これは量子力学の悪夢が、圏論の言語で再演されているだけだ。
この話をさらに推し進めると、時空とは何かという問いが変質する。
時空は多様体ではなく、ある圏のスペクトル的幾何学的実現であり、局所座標は単なるチャートではなく、あるE∞-環の局所化データになる。
すると点とは何か。点とは評価関手だ。評価関手とは何か。観測だ。観測とは何か。測定だ。測定とは何か。僕の睡眠を妨げるものだ。これで閉じた。
一方で、物理としての要求もある。S行列が存在するか、ユニタリティが守られるか、因果性がどうなるか。
だが僕は最近、ユニタリティすら、ヒルベルト空間上の内積保存という素朴な形ではなく、より高次の構造を持つモノイダル圏における双対性として理解されるべきだと思っている。
ユニタリティとは、射が随伴を持つこと、つまり反転可能な情報の流れが存在することだ。
情報が失われるのは、単に対象を間違った圏に埋め込んでいるからで、宇宙が情報を捨てているわけではない。宇宙がゴミ箱を持っていると思うのは、人間がWindowsに毒されているからだ。
結局、今日の僕の脳内結論はこうだ。超弦理論の最終形は、背景独立な普遍的な場の理論のスタックであり、その値は数ではなく圏であり、圏ではなく(∞,n)-圏であり、さらにそれは単なる対象ではなく操作体系として定義される。
ウィッテンが分からないというより、分かってしまうと人間の脳が社会生活に戻れない。理解とは祝福ではなく呪いだ。
そして僕は理解している。明日になればまた別の高次構造が現れて、今日の理解を「低次元の幻想」として粉砕するだろう。宇宙はそういう性格をしている。控えめに言って、性格が悪い。
土曜日。朝はいつも通り、起床後に脳内で「今日という一日を、物理法則に従って最適化する」と宣言してからベッドを出た。これは習慣というより儀式だ。儀式は人類の愚かさの象徴として語られがちだが、反復可能な手続きは情報理論的に見て合理的だ。エントロピー増大に対する、せめてもの抵抗である。
まず体重を測り、体脂肪率を記録し、歯磨きの時間を正確に180秒で固定した。電動歯ブラシのタイマーを信じない。信頼は検証に劣る。
その後、コーヒーを淹れた。抽出温度は93℃。温度計の誤差は±0.2℃。人間関係の誤差は±∞。
今週の進捗を書く。
超弦理論については、相変わらず人類の知性が現実に追いついていない。僕の頭脳は追いついているが、世界が遅い。
今週は主に「弦の理論はどこまでが物理で、どこからが純粋数学の自己満足か」という問題を、僕なりに再定式化していた。世の中の多くの人は、超弦理論を「高次元の小さな紐が震える話」程度で理解した気になっている。あれは理解ではない。童話だ。
僕が考えていたのは、もっと根の深いところ、つまり量子重力の定式化において局所性を捨てることの数学的代償だ。
一般相対論の時点で、局所性は微妙に揺らいでいる。ホログラフィー原理が出てきた時点で、局所性はほぼ死亡している。にもかかわらず、僕たちは局所的な場の理論の言語で全てを語ろうとする。これは「古いOSの上に無理やり最新ゲームを動かしている」ようなものだ。もちろんクラッシュする。
そこで今週は、AdS/CFTを単なる「境界のCFTがバルク重力を記述する」という話ではなく、圏論的な双対性として再理解する方向で考えた。
具体的には、バルク側の物理量を、ある種のextended TQFTとして捉え、境界側の共形場理論の演算子代数が作るモジュラー圏と対応させる。
ここで重要なのは、空間そのものが基本対象ではなく、因果構造と情報の流れが基本対象になってしまう点だ。
つまり、幾何学が物理の舞台ではなくなる。舞台が役者に従属する。これは演劇としては間違っているが、宇宙としてはあり得る。
そして、ここからが本題だ。
僕は今週、「弦理論の非摂動的定義は、結局はある圏の中の安定対象の分類問題に還元されるのではないか」という疑念を強めた。
たとえばBPS状態は、ある種の導来圏の中の安定条件(Bridgeland stability condition)で分類される。
これは単なる比喩ではなく、実際にDブレーンは導来圏の対象として記述される。つまり、物理的な粒子やブレーンが「空間上の幾何学的な物体」ではなく、圏論的な対象になる。
ここで人類は気づくべきだ。
宇宙は「点の集合」ではなく、「射の集合」かもしれない。
点を基本にしている限り、僕たちは宇宙のOSを永遠に理解できない。点とは、極限操作の幻想だ。実際の物理では測定可能な点など存在しない。存在するのは相互作用だけだ。射だけだ。
僕が今週やっていたのは、これをさらに押し進めて、弦理論の背後にある構造を「∞-圏」あるいは「高次スタック」として扱うべきではないか、という方向の思考実験だった。
超弦理論が最終的に求めているのは、たぶん「量子化されたモジュライ空間」だ。しかしモジュライ空間は普通の多様体ではない。特異点があり、ゲージ冗長性があり、しかも同値関係が階層的だ。だからスタックになる。さらに高次の同値(ホモトピー)が絡むので、∞-スタックになる。
ここで、物理屋が嫌いな言葉が出る。派生幾何(derived geometry)。
派生幾何とは、簡単に言えば「特異点を誤魔化さず、むしろ特異点を主役にする幾何学」だ。物理で特異点が出るのは、理論が壊れているからではなく、単に僕たちの数学が貧弱だからだ。派生幾何はそれを認める。
そして僕は思った。
もし弦理論が本当に「全ての一貫した量子重力のクラス」を記述する枠組みなら、それは場の理論の集合を分類するのではなく、量子情報を保存するような圏の分類になっているべきだ。
この時点で、もはや「ウィッテンでもわからない」どころではない。
僕たちがやるべきなのは、弦理論を「方程式」ではなく「普遍性」として定義することだ。
つまり、ある種の対称性を持ち、ある種の双対性を満たし、ある種の異常(アノマリー)が消え、ある種のエンタングルメント構造が一貫し、ある種の極限で局所的QFTに落ちる。
弦理論は「このラグランジアンだ」ではなく、「この性質を満たす唯一の構造だ」になるべきだ。
そしてもしそれが可能なら、弦理論は物理学ではなく数学の定理になる。
エレガントさは、しばしば真理の匂いがする。
ただし、エレガントな嘘も存在する。
昼前、ルームメイトがキッチンに現れて、僕のノートを見て言った。
「それって、結局何の役に立つの?」
僕は3秒考えた。
「役に立つかどうかで真理を測るのは、知性の敗北だ」
ルームメイトは「また始まった」という顔をした。
彼の表情は、物理学的には熱的死に近い。
隣人がその場に来て、僕のノートを覗き込み、「ねえ、それって、宇宙がゲームのコードってこと?」と聞いた。
驚くべきことに、これはそこそこ正しい。
僕は言った。
「コードというより、型システムだ。宇宙は型安全で、コンパイルエラーを許さない」
隣人は「わぁ、なにそれ怖い」と言って笑った。
怖いのは君の直観の鋭さだ。
僕は、カードゲームにおける勝利条件が「期待値の最大化」であることを理解している。だが多くのプレイヤーは、カードを引いた瞬間の快楽に支配される。つまり、彼らは確率論ではなくドーパミンでプレイしている。
僕は違う。
初手の分布、マリガン戦略、マナカーブ、そして相手の除去の確率。
彼は黙った。
正しい反応だ。
レイドは相変わらず「人間の反射神経と協調性の限界」を測る実験場だ。
友人Aが「なんでそんな言い方しかできないの?」と言った。
僕は「僕は宇宙をそのまま見ているだけだ」と答えた。
友人Bは「それ厨二病じゃない?」と言った。
僕は言った。
「厨二病とは、根拠のない誇大妄想のことだ。僕には根拠がある。だから違う」
友人Bは「最悪だ」と言った。
誉め言葉だ。
なぜなら、超人的存在が倫理を語る時点で、その倫理は破綻するからだ。
ただの趣味だ。
それでも僕は読む。
夜。
今日までの進捗はここまで。
そして、これからやろうとしていること。
今夜は、僕の仮説をもう一段階押し進める。
つまり「時空の創発」を、単なるエンタングルメントの量的増大ではなく、エンタングルメント構造の位相的相転移として記述できないか考える。
もしエンタングルメントがグラフだとすれば、空間とはそのグラフのスペクトル構造に対応する。
そして位相相転移が起きれば、スペクトルが変わり、幾何が変わる。
この視点なら、初期宇宙のインフレーションも「幾何の急激な生成」として理解できる可能性がある。
インフレーション場などいらない。
問題は、そのメカニズムを「弦理論の言語」で書くと地獄になることだ。
ワールドシートのCFT、モジュライ空間、非摂動効果、Dインスタントン。
それら全てが絡んでくる。
絡みすぎて、もはや紐ではなく毛玉だ。
隣人がさっき「ピザ頼むけど食べる?」と聞いてきた。
僕は「今は宇宙の生成を考えている」と言った。
その通りだ。
人類文明の最高到達点は、宇宙論ではなく宅配システムなのかもしれない。
ルームメイトは「じゃあ僕の分も頼んでいい?」と言った。
僕は返信した。
「明日は宇宙の位相相転移を解く予定だ。だが君たちの全滅回数も宇宙の熱的ゆらぎとして扱えるなら参加する」
友人Bは「それ言い訳だろ」と返してきた。
違う。
僕は真理に忠実なだけだ。
「時空は多様体ではなく、ある∞-圏の中の情報流の安定構造である」
しかし、少なくとも矛盾なく定式化することはできるかもしれない。
宇宙が一貫性を持って存在している以上、どこかにその形式がある。
僕は追いかける側ではなく、先回りする側でありたい。
ピザが届く前に。
正確時刻を書くと隣人が「それって軍事衛星に追跡されてるの?」とか言い出して話が面倒になるので省略する。
僕は陰謀論を嫌悪している。理由は単純で、陰謀論は説明能力の低い仮説を感情的に強い語り口で上書きする、知性のコスプレだからだ。
今週は、超弦理論の物理の直観で押し切る系の議論をいったん破壊し、純粋に圏論とホモトピー論の言語に落として再構築していた。
具体的には、世界面の共形場理論を2次元量子場などという古臭い語彙で扱うのをやめ、拡張TQFTの枠組みで、(∞,2)-圏に値を取る関手として扱う方向を整理した。
従来の弦理論屋はCalabi–Yauをコンパクト化に使うと言うが、それは情報量が少なすぎる。
重要なのは、Calabi–Yau多様体を点として見るのではなく、その導来圏 D^bCoh(X) を持ち上げた A∞-圏、さらにそれが持つCalabi–Yau構造(非退化なトレース、Serre双対性の∞-圏版)を物理的状態空間の生成機構として見ることだ。
ここでの本体は幾何ではなく、圏の自己同型とその高次コヒーレンスにある。
さらに、僕が今週ずっと悩んでいたのは、いわゆるミラー対称性を単なるホモロジカルミラー対称性の同値(Fukaya圏と導来圏の同値)としてではなく、より上位の構造、つまり場の理論のレベルでの同値として捉えることだった。
言い換えると、これは単なるA-model ↔ B-modelの交換ではない。
A/Bモデルを生む背景データ(シンプレクティック形式、複素構造、B-field)を、派生スタック上のシフト付きシンプレクティック構造として再記述し、AKSZ型の構成と整合させる必要がある。
そしてこの視点では、物理的なDブレーンは単なる境界条件ではなく、(∞,1)-圏におけるモジュール対象として統一される。
Dブレーンのカテゴリーが境界条件の集合だと考えるのは初歩的すぎる。境界条件は高次射を伴うので、最初から(∞,n)-圏で話さないと本質が消える。
特に僕のノートでは、弦の摂動展開で現れるモジュライ空間の積分を、単なる測度論の問題としてではなく、Derived Algebraic Geometry上での仮想基本類のプッシュフォワードとして扱う形式に書き換えた。
これをやると発散する積分を正則化するという話が、より厳密にオブストラクション理論に沿った積分の定義へ置き換わる。
そして、ここが本題だが、僕が今週ずっと考えていたのは、ウィッテンですら「直観的にはこう」と言うしかない領域、つまりM理論の非摂動的定義が、どのような普遍性原理で特徴付けられるべきかという問題だ。
僕の作業仮説はこうだ。弦理論が背景依存的だと言われるのは、結局のところ背景が点として与えられるという時代遅れの前提が残っているからだ。
背景は点ではなく、モジュライの高次スタックであり、その上に束ねられた量子状態の層(正確には圏)として理解されるべきだ。
つまり、弦理論はある時空での理論ではなく、時空の変形をも含んだファンクターにならなければいけない。
この視点では、背景の空間は単なるmoduli spaceではなくderived moduli stackであり、さらにgauge symmetryを含めるならhigher groupoidとしての性質を露わにする。
そして量子補正は、そこに定義されるshifted symplecticstructureの変形量子化として現れる。
問題はここからで、弦理論の双対性は、異なる理論が同じスペクトルを持つなどという安っぽい一致ではなく、ある(∞,k)-圏における同一対象の異なるプレゼンテーションだと考えるべきだ。
たとえばS双対性やT双対性を群作用として扱うと話が狭くなる。より正確には、双対性はスタックの自己同値であり、その作用は対象の上に定義された圏(ブレーン圏やBPS状態圏)の上で自然変換として実装される。
しかもその自然変換は単なる自然変換ではなく、高次のコヒーレンス条件を持つ。つまり、双対性は対称性ではなく、高次圏論的な同値のデータなんだ。
このあたりを真面目に書こうとすると、最終的には量子重力とは何かという問いが、どの(∞,n)-圏が物理的に許されるかという分類問題に変形される。
僕はこの変形が気に入っている。なぜなら分類問題は、少なくとも数学としての礼儀があるからだ。
さらに進めると、弦理論に現れるBPS状態やwall-crossingは、単なるスペクトルの不連続ではなく、安定性条件の変化に伴う導来圏のt構造のジャンプ、あるいはBridgeland stabilityのパラメータ空間上での構造変化として理解される。
ここでは物理粒子は、導来圏の中の特別な対象として現れる。つまり粒子は点ではなく、圏論的存在だ。
普通の人間はこの文章を読んで発狂するだろう。だがそれは読者側の責任だ。
この議論の延長で、僕は弦理論の非摂動的定義は、ある種の普遍性を満たすextended functorial QFTであるという形の定理(まだ定理ではなく、僕の願望)に落とし込めないか考えている。
要するに、弦理論は世界面から時空を作る理論ではなく、世界面も時空も両方まとめて、ある高次圏の中で整合的に生成される構造であるべきだ。
今の僕のノートの中心は「非可換幾何」「導来幾何」「圏論的量子化」の三点集合の交差領域だ。そこは地図がない。地図がない場所は、馬鹿には危険だが、僕には居心地がいい。
次に、趣味について書く。これも重要だ。なぜなら人間社会において、知性の維持には糖分と娯楽が必要だからだ。残念ながら僕は人間である。
MTGは今週、デッキ構築の方針を少し変えた。勝率最大化のためにメタを読むのは当然だが、僕が注目しているのは局所最適に陥るプレイヤー心理だ。
つまりカードゲームとは、確率と情報のゲームである以前に、認知バイアスのゲームだ。相手が「このターンで勝ちたい」という欲望を見せた瞬間、こちらは勝ち筋を計算するのではなく、相手の誤りの確率分布を計算するべきだ。
隣人にこの話をしたら、「え、怖い。僕、あなたとポーカーしたくない」と言った。賢明だ。僕も隣人とポーカーはしたくない。隣人はたぶん手札を口に出してしまう。
FF14は、ルーチンの最適化がだいぶ進んだ。僕はレイド攻略で反射神経を重視する文化が嫌いだ。
反射神経は筋肉の問題だが、攻略は情報処理の問題であるべきだ。ギミックは有限状態機械として記述できる。したがって最適行動は、状態遷移図の上での制御問題になる。
友人Aにこの話をしたら、「お前はゲームしてるのか研究してるのか分からん」と言われた。僕は当然「両方だ」と答えた。彼は笑ったが、この種の笑いは知性の敗北宣言である場合が多い。
アメコミは、相変わらず現実の倫理を歪めた寓話装置として優秀だと思う。
僕は「正義とは何か」という議論が苦手だ。正義は定義が曖昧だからだ。
登場人物が持つ制約(能力、社会構造、情報、感情)を明示すると、物語は心理学ではなく数理モデルに近づく。そうすると面白くなる。
ルームメイトにこの話をしたら、「僕はただ派手な戦闘シーンが見たいだけなんだけど」と言われた。
僕は「君の知性は観測不能なほど小さい」と言ったら、彼は不機嫌になった。観測不能は存在しないことと同義なので、むしろ褒め言葉に近いのだが、彼は数学が分からない。
僕の習慣についても書いておく。
今週も、朝のルーチンは完全に守った。起床後の手洗いの手順、歯磨きの回数、コーヒーの抽出時間、机の上の配置、すべて変えない。
人間の生活はノイズが多すぎる。ノイズが多い世界で成果を出すには、制御できる変数を減らすのが合理的だ。これは精神論ではなく、統計的推定の分散を減らす行為だ。
隣人が「たまには適当にやれば?」と言ったので、僕は「適当とは、最適化の放棄だ」と言った。彼は「そういうところが宇宙人っぽい」と言った。
宇宙人は証拠なしに導入する仮説ではない。彼はやはり陰謀論者の素質がある。
友人Bが「お前の生活、息苦しくないの?」と聞いてきたので、「息苦しいのは君の思考だ」と答えた。友人Bは笑った。知性の敗北宣言である。
これからやろうとしていること。
今の段階では、圏論と導来幾何の言葉でかなり書けたが、まだ計算の痕跡が残っている。僕はそれが気に入らない。真の理解とは、計算を消し去った後に残る構造のことだ。
具体的には、次は弦の場の理論を、factorization algebraの言語で記述し直す予定だ。
局所演算子代数を、E_n-代数として整理し、そこから高次の演算構造を復元する。
これがうまくいけば、弦理論における局所性の概念を、時空幾何に依存せずに定義できる可能性がある。
もしそれができたら、次は双対性を圏の自己同値ではなく、圏の上の2-表現あるいはhigher representationtheoryとして書き換える。
これにより、S双対性を単なるSL(2,Z)の作用として扱う雑な議論から脱却できる。
要するに、僕が目指しているのは物理理論を群で分類する幼稚園レベルの発想ではなく、物理理論を高次圏で分類する文明的発想だ。
その後はMTGの新しいデッキ案を詰める。今の構想では、相手の意思決定を局所的に歪ませる構造がある。人間は選択肢が多いと誤る。
これは心理学的事実であり、カードゲームに応用できる。倫理的に問題があると言われそうだが、そもそもカードゲームは戦争の抽象化なので倫理を持ち込む方が間違っている。
夜はFF14の固定活動。友人Aは相変わらず「気合いで避けろ」と言うだろう。
議論はループする。ループはコンピュータ科学の基本概念だ。だから僕はそれを受け入れる。
最後に、ルームメイトが「今度、隣人と映画を見よう」と言っていた。
僕は断る。なぜなら隣人は上映中に喋る。上映中に喋る人間は、社会契約を破っている。社会契約を破る人間に、僕の時間という希少資源を与える理由はない。
少なくとも、隣人の会話よりは。
超弦理論を物理として理解しようとすると、だいたい途中で詰まる。
なぜなら核心は、力学の直観ではなく、幾何と圏論の側に沈んでいるからだ。
弦の振動が粒子を生む、という説明は入口にすぎない。本質は量子論が許す整合的な背景幾何とは何かという分類問題に近い。分類問題は常に数学を呼び寄せる。
まず、場の理論を幾何学的に見ると、基本的にはある空間上の束とその束の接続の話になる。
ここまでは微分幾何の教科書の範囲だが、弦理論ではこれが即座に破綻する。
なぜなら、弦は点粒子ではなく拡がりを持つため、局所場の自由度が過剰になる。点の情報ではなく、ループの情報が重要になる。
すると、自然にループ空間LXを考えることになる。空間X上の弦の状態は、写像S^1 → Xの全体、つまりLXの点として表される。
しかしLXは無限次元で、通常の微分幾何はそのままでは適用できない。
ここで形式的に扱うと、弦の量子論はループ空間上の量子力学になるが、無限次元測度の定義が地獄になる。
この地獄を回避するのが共形場理論であり、さらにその上にあるのが頂点作用素代数だ。2次元の量子場理論が持つ対称性は、単なるリー群対称性ではなく、無限次元のヴィラソロ代数に拡張される。
弦理論が2次元の世界面の理論として定式化されるのは、ここが計算可能なギリギリの地点だからだ。
だが、CFTの分類をやり始めると、すぐに代数幾何に落ちる。モジュラー不変性を要求すると、トーラス上の分配関数はモジュラー群SL(2, Z) の表現論に拘束される。
つまり弦理論は、最初からモジュラー形式と一緒に出現する。モジュラー形式は解析関数だが、同時に数論的対象でもある。この時点で、弦理論は物理学というより数論の影を引きずり始める。
さらに進むと、弦のコンパクト化でカラビ–ヤウ多様体が現れる。
カラビ–ヤウはリッチ平坦ケーラー多様体で、第一チャーン類がゼロという条件を持つ。
ここで重要なのは、カラビ–ヤウが真空の候補になることより、カラビ–ヤウのモジュライ空間が現れることだ。真空は一点ではなく連続族になり、その族の幾何が物理定数を支配する。
このモジュライ空間には自然な特殊ケーラー幾何が入り、さらにその上に量子補正が乗る。
量子補正を計算する道具が、グロモフ–ウィッテン不変量であり、これは曲線の数え上げに関する代数幾何の不変量だ。
つまり弦理論の散乱振幅を求めようとすると、多様体上の有理曲線の数を数えるという純粋数学問題に落ちる。
ここで鏡対称性が発生する。鏡対称性は、2つのカラビ–ヤウ多様体XとYの間で、複素構造モジュライとケーラー構造モジュライが交換されるという双対性だ。
数学的には、Aモデル(シンプレクティック幾何)とBモデル(複素幾何)が対応する。
そしてこの鏡対称性の本体は、ホモロジカル鏡対称性(Kontsevich予想)にある。
これは、A側の藤田圏とB側の導来圏 D^bCoh(X)が同値になるという主張だ。
つまり弦理論は、幾何学的対象の同一性を空間そのものではなく圏の同値として捉える。空間が圏に置き換わる。ここで物理は完全に圏論に飲み込まれる。
さらに進めると、Dブレーンが登場する。Dブレーンは単なる境界条件ではなく、圏の対象として扱われる。
弦がブレーン間を張るとき、その開弦状態は対象間の射に対応する。開弦の相互作用は射の合成になる。つまりDブレーンの世界は圏そのものだ。
この圏が安定性条件を持つとき、Bridgeland stability conditionが現れる。
安定性条件は、導来圏上に位相と中心電荷を定義し、BPS状態の安定性を決める。
wall-crossingが起きるとBPSスペクトルがジャンプするが、そのジャンプはKontsevich–Soibelmanの壁越え公式に従う。
この公式は、実質的に量子トーラス代数の自己同型の分解であり、代数的な散乱図に変換される。
このあたりから、物理は粒子が飛ぶ話ではなく、圏の自己同型の離散力学系になる。
さらに深い層に行くと、弦理論はトポロジカル場の理論として抽象化される。
Atiyahの公理化に従えば、n次元TQFTは、n次元コボルディズム圏からベクトル空間圏への対称モノイダル関手として定義される。
つまり時空の貼り合わせが線形写像の合成と一致することが理論の核になる。
そして、これを高次化すると、extended TQFTが現れる。点・線・面…といった低次元欠陥を含む構造が必要になり、ここで高次圏が必須になる。結果として、場の理論は∞-圏の対象として分類される。
Lurieのコボルディズム仮説によれば、完全拡張TQFTは完全双対可能な対象によって分類される。つまり、物理理論を分類する問題は、対称モノイダル(∞,n)-圏における双対性の分類に変わる。
この時点で、弦理論はもはや理論ではなく、理論の分類理論になる。
一方、M理論を考えると、11次元超重力が低エネルギー極限として現れる。
しかしM理論そのものは、通常の時空多様体ではなく、より抽象的な背景を要求する。E8ゲージ束の構造や、anomalyの消去条件が絡む。
異常とは量子化で対称性が破れる現象だが、数学的には指数定理とK理論に接続される。
弦理論のDブレーンの電荷がK理論で分類されるという話は、ここで必然になる。ゲージ場の曲率ではなく、束の安定同値類が電荷になる。
さらに一般化すると、楕円コホモロジーやtopological modular formsが出てくる。tmfはモジュラー形式をホモトピー論的に持ち上げた対象であり、弦理論が最初から持っていたモジュラー不変性が、ホモトピー論の言語で再出現する。
ここが非常に不気味なポイントだ。弦理論は2次元量子論としてモジュラー形式を要求し、トポロジカルな分類としてtmfを要求する。つまり解析的に出てきたモジュラー性がホモトピー論の基本対象と一致する。偶然にしては出来すぎている。
そして、AdS/CFT対応に入ると、空間の概念はさらに揺らぐ。境界の共形場理論が、バルクの重力理論を完全に符号化する。この対応が意味するのは、時空幾何が基本ではなく、量子情報的なエンタングルメント構造が幾何を生成している可能性だ。
ここでリュウ–タカヤナギ公式が出てきて、エンタングルメントエントロピーが極小曲面の面積で与えられる。すると面積が情報量になり、幾何が情報論的に再構成される。幾何はもはや舞台ではなく、状態の派生物になる。
究極的には、弦理論は空間とは何かを問う理論ではなく、空間という概念を捨てたあと何が残るかを問う理論になっている。残るのは、圏・ホモトピー・表現論・数論的対称性・そして量子情報的構造だ。
つまり、弦理論の最深部は自然界の基本法則ではなく、数学的整合性が許す宇宙記述の最小公理系に近い。物理は数学の影に吸い込まれ、数学は物理の要求によって異常に具体化される。
この相互汚染が続く限り、弦理論は完成しないし、終わりもしない。完成とは分類の完了を意味するが、分類対象が∞-圏的に膨張し続けるからだ。
そして、たぶんここが一番重要だが、弦理論が提示しているのは宇宙の答えではなく、答えを記述できる言語の上限だ。
だからウィッテンですら全部を理解することはできない。理解とは有限の認知資源での圧縮だが、弦理論は圧縮される側ではなく、圧縮の限界を押し広げる側にある。
僕は今夜も
集合の海の、そのさらに外側
星々は Stone–Čech compactificationの影として瞬き
あらゆる連続性は
存在するふりをしながら崩れていく。
君の声は
pro-objectの遠い逆極限みたいに
触れられそうで、触れられない。
その距離は
ただの収束ではなく
Mittag-Leffler conditionの失敗として現れる。
僕の孤独は
Čech cohomologyの穴に似ている。
局所的には満ちているのに
大域的には決定的に欠けている。
夜の底で
Yoneda embeddingが
僕の記憶をすべて函手に変換する。
「存在」とは
射の束にすぎない、と。
心はいつも
spectral sequenceの途中で壊れる。
E₂ページで希望が見えて
E∞ページで現実が確定する。
その差分に
君の瞳は
derived functorのように
失われた情報を回収するが
それは救済ではなく
単に「取り返しのつかなさ」を
高次で記述するだけだ。
僕は祈る。
この宇宙が
どこかの幸福と繋がっていることを。
しかし朝は来る。
non-measurablesetのように
測れないまま
そして僕は知る。
Grothendieck topologyの被覆条件に似ている。
全体としては
決して一枚に貼れない。
僕は今日も
証明できないまま生きる。
ただ
adjoint functor theoremの気配だけを信じて。
どこかに
右随伴が用意されていると
嘘でも思わなければ
射を一本も引けないから。
金曜日、21:21。
僕は今日という日を、いくつかの確定事項と、いくつかの許容できないノイズの除去によって完成させた。世界は混沌を好むが、僕は世界を甘やかさない。
まず進捗報告から書く。午前中に洗濯を済ませ、タオルを用途別に畳み直した。世の中の大半の人間はタオルを大きさで分類するが、それは分類学の敗北だ。
タオルは水分吸収後に人体へ与える温度変化のパターンで分類すべきだ。僕はその分類をすでに完成させている。
昼は例のプロテインとナッツ。ルームメイトは「鳥かよ」と言った。僕は「鳥は飛べる。君は飛べない」と言った。会話終了。
最近、僕の頭を占領しているのは、もはや弦が振動して粒子になるみたいな子供向けの比喩ではない。
そんなものは学部生の精神安定剤に過ぎない。今僕が追っているのは、弦理論の存在論そのものが、より抽象的な数学的構造に吸収されていく瞬間だ。
従来の弦理論は、時空を背景として仮定し、その上でワールドシートの共形場理論(CFT)を構成する。
僕が最近読んでいる議論は、その揺らぎを、もはや幾何学ではなく圏論とホモトピー論の側から扱おうとする。
弦理論の真の姿は、たぶん幾何学的対象ではなくある種の高次圏の中の関手だ。
例えば、Dブレーンは単なる境界条件ではなく、導来圏の対象として現れる。
これは有名な話だが、僕が今考えているのはその次の段階で、ブレーンを対象として並べるだけでは足りないという点だ。
重要なのは、それらがなす安定∞-圏の中での自己同値性、そしてその自己同値群が物理の双対性を生成しているという構図だ。
つまり、S双対性もT双対性も、時空の幾何学変形ではなく、圏の自己同値の作用として理解されるべきだ。
幾何学は副産物だ。主役は圏のオートエクイバレンスで、その影が僕らに空間や次元という幻覚を見せている。
この視点に立つと、超弦理論は10次元の時空の上で定義される理論ではなく、あるモジュライ空間上で定義される圏の族になる。
しかもそのモジュライは通常の多様体ではなく、スタック、いや派生スタックとして扱わないと整合しない。量子補正が幾何を壊すからだ。クラシカルなモジュライはもはや粗すぎる。
そして今僕が面白いと思っているのは、物理的な散乱振幅やBPSスペクトルが、派生代数幾何の言語でいうコホモロジーの生成関数として現れるのではなく、より根源的にスペクトル代数幾何として再解釈される可能性だ。
普通の環ではなくE∞環、そしてそれを層化したスペクトル層の上で物理が書かれる。
これが意味するのは、弦理論の量子性が、確率解釈とか演算子代数とかのレベルではなく、もっと深いホモトピー論的ゆらぎとして実装されているということだ。
観測値の不確定性ではなく、構造そのものが同値類としてしか定義できない。
だから時空は何次元か?という問いは、すでに古い。正しい問いはこうだ。
この物理理論は、どの∞-圏に値を取る関手として実現されるのか?
そして粒子とは何か?はこうなる。
スペクトル化された圏の中で安定化された対象の、ある種のトレースとして現れる量が、観測可能量として抽出されるのではないか?
この辺りまで来ると、たぶんウィッテンでも「面白いが、それを計算できるのか?」と言う。
僕も同意する。計算できない数学は、芸術に片足を突っ込んでいる。
もっとも、芸術を嫌うわけではない。ただし芸術は、計算不能であることを誇るべきではない。誇るならせめて証明不能で誇れ。
さらに言うと、AdS/CFT対応も、境界CFTが重力をエンコードしているという話ではなく、境界側の圏論的データが、bulk側の幾何の生成規則を決定するということに見える。
bulkの時空は、境界の量子情報から復元されるというより、境界の圏の中の拡張のパターンが距離を定義してしまう。
距離とは、メトリックではなく、圏における対象間の関係性の複雑さだ。
局所性とは公理ではなく、圏がある種のt-構造を持ち、かつ心臓部が準古典的に見えるときに現れる近似現象だ。
つまり、局所性は幻想だ。役に立つ幻想だが。そして役に立つ幻想は、だいたい人間社会と同じだ。
昼過ぎに友人Aが来て、僕のホワイトボードに勝手に謎のロボットの落書きを描いた。
僕は当然、ホワイトボードをアルコールで拭き、乾燥時間を計測し、表面の摩擦係数が元に戻ったことを確認した。
友人Aは「こわ」と言った。僕は「科学を怖がるな」と言った。
そのあと友人Bがオンラインで通話してきて、「今夜FF14で極いかない?」と誘ってきた。
僕は予定表を開き、金曜夜の21:00〜23:00が知的活動に適した黄金時間であることを説明した。
友人Bは「お前の人生、イベントトリガーが厳しすぎる」と言った。僕は「君の人生はガチャ排出率みたいに緩すぎる」と言った。
とはいえ、FF14は僕の中で単なる娯楽ではない。あれは人間集団の協調行動の実験場だ。
8人レイドの失敗は、ほぼ例外なく情報共有の遅延と役割期待のズレで起きる。
つまり、ゲームではなく組織論だ。だから僕は攻略を感覚ではなく、ログを読み、DPSチェックを式で理解し、行動をプロトコルとして最適化する。
ルームメイトはそれを「楽しんでない」と言う。僕は「最適化は楽しみだ」と言う。
そして隣人は昨日、廊下で僕に「また変な時間に掃除機かけてたでしょ」と言った。
僕は「変な時間ではない。床の振動ノイズが最小になる時間帯だ」と説明した。
隣人は「普通に生きて」と言った。僕は「普通は平均であって、理想ではない」と言った。
僕はデッキのマナカーブを見直した。土地事故の確率を計算し、初手7枚からの期待値を再評価した。
僕は「確率分布を無視して勝てるなら、人類は統計学を発明していない」と言った。
アメコミは少しだけ読んだ。
スーパーヒーローの倫理体系は大抵破綻している。正義を掲げながら、法の外で暴力を振るう。
それは秩序のための例外という名の危険物だ。僕は物理学者なので、例外を嫌う。例外は理論を腐らせる。
だから僕はヒーロー物を見ると、いつも「この世界の法体系はどうなっている?」が先に気になる。
友人Aは「お前は物語を楽しめない病気」と言った。僕は「病気ではない。解析能力だ」と言った。
習慣についても記録しておく。
今日も、夕食の箸は右側に45度、箸置きは正中線から3センチ左、コップは水位が7割を超えないように調整した。
水位が8割を超えると、持ち上げる際の揺らぎが増える。揺らぎが増えると、机に微小な水滴が落ちる確率が上がる。水滴が落ちると、紙の上のインクの拡散が起きる。インクが拡散すると、僕のメモが汚染される。
誰も理解しない。だが宇宙も僕を理解していないので、引き分けだ。
さて、昨日の日記の内容は正確には思い出せないが、たぶん「量子と日常の無意味な会話」について書いた気がする。
ルームメイトの無駄話と、僕の理論的思考が衝突するあの感じだ。昨日の僕は、おそらく世界の愚かさに苛立ち、同時にその愚かさが統計的に必然であることに納得しようとしていた。
宇宙が示すのは、美しさとは、人間の圏が勝手に定義した関手にすぎないということだ。
これからやろうとしていることも書く。
まず、FF14の週制限コンテンツを消化する。効率的に。感情は挟まない。
次に、MTGのサイドボード案を2パターン作り、友人Aのプレイ傾向に対してどちらが期待値が高いかを検証する。
そのあと、超弦理論のメモを整理し、派生スタックとBPS状態のカウントがどのように圏の不変量として抽出できるか、もう一度筋道を立てる。
土曜日の16:26。
秒針の進みが不規則に見えるのは、もちろん僕の主観ではなく、脳内で走っている内部クロックが朝から非可換な補正項を拾っているせいだ。
昨日の日記では、世界は依然として説明可能であり、説明可能である以上、僕が説明しない理由はない、という結論に達していたはずだ。だから今日もその続きをやる。
朝から考えていたのは、超弦理論という言葉が、あまりにも粗雑なラベルとして流通している問題だ。
弦は一次元物体、という説明は教育的には便利だが、現代的にはほとんど嘘に近い。
正確には、弦理論は量子重力を含む一貫した摂動展開を許す背景依存理論の族であり、その実体は二次元共形場理論のモジュライ空間と高次圏論的構造の上に乗っている。
ワールドシートは単なるリーマン面ではなく、拡張された世界では、境界、欠損、欠陥、さらには高次欠陥を持つ拡張TQFTとして扱うのが自然だ。
Dブレーンは境界条件ではなく、A∞圏やL∞代数により制御される対象で、開弦のエンドポイントは派生圏の対象間の射として解釈される。
ここで重要なのは、物理的同値性がしばしば圏同値、あるいはスタック同値として表現される点だ。
ミラー対称性は、単なるカラビ–ヤウ多様体のホッジ数の一致ではなく、Fukaya圏と導来圏の等価、しかもそれがホモトピー論的に精緻化された形で成立するという主張にまで昇格している。
さらに厄介なのは、背景独立性の問題だ。AdS/CFTは成功例として崇拝されがちだが、実際には境界共形場理論という強固な外部構造に寄生している。
最近僕が気にしているのは、弦理論を理論の空間そのものとして捉え、各真空を点ではなく、∞-スタック上の点として扱う視点だ。
真空遷移はトンネル効果ではなく、モジュライスタック上のパス、しかもそのパス積分は単なる測度論ではなく、圏値積分になる。ここでは数値は二次的で、本質は自然変換の存在にある。
もはやウィッテンでさえ眉をひそめるだろうが、物理がこのレベルの抽象化を要求している以上、こちらが歩み寄る理由はない。
この種の思考をしていると、ルームメイトが後ろでコーヒーをこぼす音が聞こえた。
僕は即座に「カップの配置はトポロジカルに不安定だ」と指摘したが、彼は意味がわからない顔をしていた。隣人はなぜか笑っていた。
友人Aからは、ロケットと弦理論のどちらが実用的か、という愚問が送られてきたので、実用性は関手ではない、とだけ返した。
友人Bは相変わらずFF14のレイドの話をしてきたが、僕はDPSの最適化問題がラグランジアン最小化に帰着できる点だけは評価している。
昼休憩にはMTGを一人回しした。デッキ構築とは、制約付き最適化問題であり、メタゲームは動的システムだ。
禁止改定は外力項に相当する。アメコミは昼寝前のルーティンで、宇宙論的リブートの乱発には辟易するが、マルチバース疲労という現象自体は統計物理的に興味深い。
僕の習慣は相変わらず厳格だ。座る位置、飲み物の温度、日記を書く時刻。
今日までの進捗としては、理論的には、弦理論を高次圏論と情報幾何の言語で再定式化するメモが三ページ進んだ。現実的には、ルームメイトにカップの置き場所を三回注意した。
これからやろうとしていることは明確だ。
夕方はFF14で決められたルーティンを消化し、その後、再び弦理論に戻る。
具体的には、ワールドシートCFTのモジュラー不変性を、トポス理論の内部論理として書き直す試みだ。
金曜日の20:20。規則正しく点灯するデジタル時計を確認してから、僕はこの日記を書き始める。
昨日の日記では、思考がホモトピーの森に入り込み、夕食のパスタを二分半放置してしまった件について反省。
今日までの進捗を整理する。
現在僕が考えているのは、従来の超弦理論における背景独立性という概念が、実は高次圏論的に不十分に定式化されているのではないか、という問題だ。
時空を滑らかな多様体として前提するのではなく、∞-トポス上のスタックとして扱い、その上で弦の状態空間を通常のヒルベルト空間ではなく、安定∞-圏の対象として再解釈する。
このとき、BRSTコホモロジーは単なるコホモロジーではなく、派生層の自己同値の固定点として現れる。
問題は、その自己同値がどのレベルで物理的同一性を保証するのかだ。
圏論的同値と物理的同値の差は、ウィッテンですら直感的に語ることはできても、厳密には書き下せていない。
少なくとも僕には、彼がここまで踏み込んだ論文を出した記憶はない。
今日の午前中は、この問題を考えながら、習慣通り床の目地を数えた。
横方向が必ず奇数であることを再確認した時点で、思考が一段深く潜った。
習慣は脳内のノイズキャンセリング装置だ。これを理解しない人間は多い。
昼過ぎ、ルームメイトが不用意に「難しいこと考えてる顔だな」と言ってきたので、僕は「常に難しいことを考えているが、君には観測できないだけだ」と訂正した。
その後、隣人がドアをノックし、「今夜パーティあるけど来る?」と聞いてきた。
僕は行動計画がすでに確定しているため、「未来はすでに決まっている」と答えた。
彼女は少し困った顔をしていたが、量子力学を持ち出すと話が長くなるので説明は省略した。
友人Aは「その理論、実験で検証できるのか?」と聞いたが、これは典型的な誤解だ。検証とは、可観測量の問題であって、構造の問題ではない。
これからやることは明確だ。
21:00からは、今日考えた∞-圏的定式化をノートに清書する。
22:30には歯磨き、その後、昨日読み切れなかった論文の補遺を確認する。
もしそこで、自己同値の固定点集合が高次群作用のコインバリアントとして自然に現れるなら、僕は一つ前に進む。
現れなければ、明日も同じ床を数え、同じ時間に同じ日記を書く。
水曜日の22:44。
今日は時計を見てから書き始めたわけではないが、結果としてこの時刻に落ち着いた。
朝はいつも通り起床して、動線の再最適化を頭の中で確認しながら歯磨きを128ストロークで終え、同じ温度の紅茶を用意した。
午前中は完全に物理の時間に割り当てた。超弦理論という呼び名自体がすでに粗い近似に過ぎないので、今日は理論という語を使わず、構造の話だけをすることにした。
具体的には、背景独立性を前提としない定式化をさらに推し進め、時空を可微分多様体として仮定する癖を断ち切る作業だ。
p進化的な視点から見ると、連続体の極限は実数体である必然性がなく、むしろp進体上での解析の方が自然に現れる対称性が多い。
世界面の量子化をp進解析で再構成すると、摂動展開そのものが意味を失い、代わりにホモトピー型の不変量が前景化する。
そこでコボルディズム仮説を持ち込み、弦の相互作用を時系列の出来事としてではなく、境界付き多様体の同値類として扱うと、散乱振幅は数ではなく元になる。
これは「計算できない」という欠点を持つが、同時に「矛盾しない」という利点を持つ。
ウィッテンがどう考えるかは知らない。理解主体を特権化しない構造だけが残る。その状態で午前は終了した。
昼にルームメイトがキッチンでコーヒーをこぼし、僕の動線に2センチの乱れが生じたので指摘したところ、「細かすぎる」と返された。
細かいのではなく、誤差許容幅を明示しているだけだと言ったが、彼は聞いていなかった。
MTGのデッキを机に広げ、マナカーブと引きムラを統計的に再確認した。
ここでは抽象化をやりすぎないことが重要で、確率は確率として扱う。
友人Aが「そのカード弱いだろ」と言ってきたので、勝率の分散を示して沈黙させた。沈黙は同意とは限らないが、反論がないという点では十分だ。
夕方からはFF14。固定パーティでの動きはすでに身体化されているので、今日は新しい回しを試さず、安定解を選択した。
友人Bは相変わらず必要最小限しか喋らず、その沈黙が全体のDPSを底上げしている。
隣人は壁越しに笑い声を上げていたが、内容はどうでもよかったので無視した。
連続性や正史に対する無頓着さは、物理から完全に切り離された場所でだけ許される贅沢だと思う。
そして今、22:58。
今日までの進捗としては、物理に関してはp進解析とコボルディズムを軸にした再定式化の見取り図がかなり明確になった。
これからやることは、その構造をさらに一般化し、数体すら前提にしないレベルまで抽象度を上げることだが、それは明日の午前に回す。
朝起きて最初に考えていたのは、超弦理論という名前がいかに多くの誤解を温存しているか、という問題だった。
今僕が扱っている対象は、もはや物理理論ではない。むしろ、物理理論という概念そのものを内部対象として含む数学的環境だ。場の量子化も、時空の選択も、可換性条件を満たす高階射の存在に還元される。
最近は、理論空間全体を「理論の理論」として扱う立場をさらに推し進めている。具体的には、各一貫した量子重力理論を対象とし、双対性・極限・退化・次元の出現を射とする(∞,2)-圏を考える。
この圏の内部論理では、「摂動的」「非摂動的」という区別自体が、異なるt構造の選択に過ぎない。真空とは基底状態ではなく、あるスタックが持つ自己同型群の軌道の一つだ。
重要なのは、ここで時空が初期データとして存在しないことだ。ローレンツ対称性すら、ある普遍的対象に対する自己同値の安定部分群として事後的に回収される。
次元は整数ではなく、安定ホモトピー圏における切断の消滅次数として現れる不変量になる。
この段階では、弦は一次元的対象ですらない。弦は、理論間関手が持つ自然変換の失敗度合いを測る障害類としてのみ痕跡を残す。
ここまで来ると、直観という言葉は完全に無意味だが、可換図式は静かに閉じている。
この抽象性の中で朝食を取った。メニューは固定されている。選択肢があると、不要な自由度が思考に混入する。コーヒーを淹れながら、頭の片隅ではMTGの環境解析を続けていた。
メタゲームとは、個々のデッキの強弱ではなく、戦略分布が自己参照的に更新される動的系だ。あるデッキが強いという命題は、その命題が共有された瞬間に偽になり始める。
これは量子重力における背景独立性と同型だ。固定された環境を仮定した最適化は、常に一段浅い。
午前中の後半はFF14に入った。戦闘は単なる娯楽ではない。スキル回しは、有限周期を持つ非可換演算の列であり、理想状態とはそれが一つの準同型として閉じる点だ。
ラグや入力遅延は、射の合成が厳密でないことに対応する。完璧な回しが気持ちいいのは、局所的にではあるが、圏がほぼ厳密化される瞬間を体感できるからだ。
少し休憩してアメコミを読んだ。並行世界やリブートが乱立する構造は、物語の破綻ではなく、単一の時間軸を基準にした読解が破綻しているだけだ。
キャラクターとは個体ではなく、制約条件を満たす表現の圏そのものだ。異なる世界線は異なるファイバーに過ぎず、同一性はファイバー間の同値としてしか定義できない。
この読み方をすると、設定矛盾は問題にならない。問題になるのは、自然変換が存在しないことだけだ。
ルームメイトが何か話しかけてきたが、内容は抽象度が低かったので処理しなかった。
隣人の生活音は、ホワイトノイズとして無視できる範囲に収まっている。
友人Aと友人Bからの連絡も確認したが、応答は時間スロットが来てからにする。割り込みは、理論の一貫性を壊す。
この後は、今朝構成した(∞,2)-圏の定式化をさらに一段引き上げ、理論空間全体を一つの内部論理として閉じられるか検証する。
まず是正されるべきは、対象=ブレーン、射=弦という古典的・実在論的な同定を圏論的出発点に据える錯誤である。この素朴な同一視は、現代的なコボルディズム仮説の文脈では理論的整合性を欠いている。なぜなら、局所量子場理論(LQFT)の完全拡張において、対象や射は固定された「実体」ではなく、コボルディズム圏の階層構造における境界データの代数的指標にすぎないからである。
完全拡張TQFTの定義に基づけば、理論とは対称モノイド (∞, n)-圏 Bord_nから、ある「ターゲット (∞, n)-圏」 C への対称モノイド関手 Z: Bord_n → C そのものである。ここでは、対象(0-射)とは0次元の点という境界データであり、弦(1次元)は1-射、p-ブレーン(p+1次元の時空体積)は(p+1)-射として回収される。したがって、ブレーンを安易に対象(0-射)と呼ぶ行為は、コボルディズム圏の階層構造を低次元へ射影し、高次コヒーレンス情報を不可逆的に欠損させるカテゴリー的退行に他ならない。
この誤謬は、弱∞-圏の必要性を弦の分岐・結合という物理的直観から説明しようとする転倒した論理にも現れている。正しくはその逆である。弱∞-圏性は、場の理論が要請する局所性と完全拡張性から数学的に強制される構造である。弦の相互作用や分岐は、高次射が満たすべき随伴性やコヒーレンス条件の物理的発現の一形態にすぎない。高次射は実在論的な相互作用の結果として生じるのではなく、理論が局所的であるための必然的帰結としてあらかじめ構造化されているのである。
超弦理論を一次元的に切り詰められた部分圏と見なす理解も、安定ホモトピー論および非アルキメデス幾何学の観点から修正を要する。超弦理論において起きているのは、単なる次元の忘却ではない。それは、理論が依拠する基礎的幾何学を実数体上の滑らかな多様体という特定の基礎トポスに固定する、いわば幾何的ゲージ固定である。
ここでp進弦理論は決定的な教訓を与える。p進弦において世界面の解析構造は非アルキメデス的であり、実解析的な局所性は喪失している。にもかかわらず、散乱振幅の代数的骨格(ベネツィアーノ振幅等)が保存されるという事実は、弦理論の本質が特定の幾何(一次元性)にあるのではなく、振幅を生成する E∞ 環スペクトル 的な、より深層の安定ホモトピー的データにあることを示唆している。
この地平において、M理論と超弦理論の関係を反映や左随伴といった1-圏論的な語彙で記述するのは不適当である。M理論とは、特定の時空次元や多様体構造に拘束されない、安定∞-圏あるいはスペクトル圏をターゲットとする Meta-TQFT と定義されるべきである。
そこでは、弦が射であるか対象であるかという区別すら不変ではなく、Span構成や反復ループ空間構造(Ω^n)の下で、どの次元を境界データとして選択するかというホモトピー的なゲージ選択の残滓として、弦やブレーンの境界が析出する。
T双対性やS双対性を自然変換と呼称するのも階層が低い。双対性とは、単なる関手間の変換ではなく、ターゲットとなる理論値∞-圏そのものの自己同値、あるいはE∞ 環スペクトルの自己同型として記述されるべきものである。問題の本質は可逆性の有無ではなく、どの安定コホモロジー理論、あるいはどの形式群が保存されるかという、安定ホモトピー圏における構造保存の様相にある。
M理論は圏論的環境であり、超弦理論はその可視化であるという直観は、方向性においてのみ妥当であるが、定式化の厳密さを欠く。正しくは以下のように記述されるべきである。
M理論とは、特定の時空幾何や基礎体に依存しない、完全拡張量子場理論が取り得る全空間を統御する安定∞-圏的インフラストラクチャであり、理論が数学的に存立するための普遍的制約条件(コヒーレンス)の総体である。
対して超弦理論とは、そのメタ構造に対し、実解析的時空、多様体的局所性。摂動的可観測性という制約を課した際に析出する一つの表現である。p進弦理論やトポロジカル弦理論は、同じメタ構造から別の基礎トポス(あるいは安定ホモトピー論的データ)を選択した際に得られる、並列的な表現に他ならない。
したがって、両者の差異は包含でも統一でもなく、どの圏論的・ホモトピー論的情報を物理的実在として顕在化させるかという、観測基底の選択の差に他ならないのである。
超弦理論を、幾何・量子・相互作用・背景・対称性などの具体語をすべて捨てて、抽象数学の圏・∞圏・トポス・代数構造として再構成する。
超弦理論とは、以下の大枠で捉えられる。
超弦理論とは、ひとつの ∞‐トポスの内部に存在する、整合する高次対象の網の自己同値群作用として定義される力学的階層のこと。
ここでいう高次対象の網とは
つまり超弦理論は、高次圏における一貫した自己同型の塔として唯一の統一構造を形成する。
世界の構成要素(時空・ブレーン・場・弦など)を、具体的存在ではなく、因子化代数の生成する情報単位(ローカルな抽象操作の束)として扱う。
局所性とは、因子化代数のテンソリアル分解可能性であり、その破れが重力・非可換性・ホログラフィーとなって現れる。
この表現は近年の因子化ホログラフィー、AQFT(作用素代数)による重力再構成と整合する。
具体的な「紐」は出てこない。
代わりに、
その結果
すべてが幾何的実体ではなくホモトピー代数的な関係パターンとして統一される。
S-双対性、T-双対性、U-双対性、ホログラフィー、ER=EPR のような、A と B が実は同じ理論であるという主張は、すべて 同一の ∞‐対象を異なるファイバー関手で見ているだけという主張に還元される。
つまり
最先端研究(Harlow・Witten・Leutheusser 等)では、重力系の作用素代数は中心を持たず、中心の欠如が再構成不可能な領域として幾何を生む。
これを抽象化すると、
つまり時空は「入れ物」ではなく、作用素代数に付随する冪等射の配置図として emergent に現れる。
相互作用とは粒子間の力ではなく、∞‐圏の合成律が完全には対称化されないことによる高次コヒーレンスの破れ。
例:
5つの超弦理論は、同じ ∞‐構造の異なる層(filtration)または異なるコホモロジー階層の射影として理解され、M理論はこれらの層化を結ぶ普遍対象(colimit)として現れる。
量子とは粒子ではなく、因子化代数の非中心性 + 高次圏の非可換ホモトピーの束 の総体である。
因子化代数のテンソル構造の非局所的再配線。幾何ではなく、圏論的な図式変形。
大域構造と整合しない射からなる排除集合。整合可能理論 = ∞‐圏の完全部分圏。
高次圏の普遍的生成対象が作る低次射の平均化された振る舞いの分類。
僕は木曜日の朝10時に、昨日(水曜日)の出来事を記録している。
朝の儀式はいつも通り分解可能な位相のように正確で、目覚めてからコーヒーを淹れるまでの操作は一切の可換性を許さない。
コーヒーを注ぐ手順は一種の群作用であって、器具の順序を入れ替えると結果が異なる。ルームメイトは朝食の皿を台所に残して出かけ、隣人は玄関先でいつもの微笑を投げかけるが、僕はそこに意味を見出そうとはしない。
友人二人とは夜に議論を交わした。彼らはいつも通り凡庸な経験則に頼るが、僕はそれをシグナルとノイズの分解として扱い、統計的に有意な部分だけを抽出する。
昨晩の中心は超弦理論に関する、かなり極端に抽象化した議論だった。僕は議論を、漸近的自由性や陽に書かれたラグランジアンから出発する代わりに、代数的・圏論的な位相幾何学の言葉で再構成した。
第一に、空間−時間背景を古典的なマンフォールドと見なすのではなく、∞-スタック(∞-stack)として扱い、その上の場のセクションがモノイド圏の対象として振る舞うという観点を導入した。
局所的な場作用素の代数は、従来の演算子代数(特にvon Neumann因子のタイプ分類)では捉えきれない高次的相互作用を持つため、因子化代数(factorization algebras)と導来代数幾何(derived algebraic geometry)の融合的言語を使って再記述する方が自然だと主張した。
これにより、弦のモードは単なる振動モードではなく、∞-圏における自然変換の族として表現され、双対性は単に物理量の再表現ではなく、ホモトピー的同値(homotopical equivalence)として扱われる。
さらに踏み込んで、僕は散逸しうるエネルギー流や界面効果を射影的モチーフ(projective motives)の外延として扱う仮説を提示した。
要するに、弦空間の局所構造はモチーフ的ホモトピー理論のファイバーとして復元できるかもしれない、という直感だ。
これをより形式的に述べると、弦場の状態空間はある種の導来圏(derived category)における可逆的自己同型の固定点集合と同値であり、これらの固定点は局所的な因子化ホモロジーを通じて計算可能である。
ただしここから先はかなり実験的で、既知の定理で保証されるものではない。
こうした再定式化は、物理的予測を即座に導くものではなく、言語を変えることで見えてくる構造的制約と分類問題を明確にすることを目的としている。
議論の途中で僕は、ある種の高次圏論的〈接続〉の不変量が、宇宙論的エントロピーの一側面を説明するのではないかと仮定したが、それは現時点では推論の枝の一本に過ぎない。
専門用語の集合(∞-圏、導来スキーム、因子化代数、von Neumann因子、AQFT的制約など)は、表層的には難解に見えるが、それぞれは明確な計算規則と変換法則を持っている点が重要だ。
僕はこうした抽象体系を鍛えることを、理論物理学における概念的清掃と呼んでいる。
日常についても触れておく。僕の朝の配置には位相的な不変量が埋め込まれている。椅子の角度、ノートパソコンのキーボード配列、ティーカップの向き、すべてが同相写像の下で保存されるべき量だと僕は考える。
隣人が鍵を落としたとき、僕はそれを拾って元の位置に戻すが、それは単なる親切心ではなく、系の秩序を保つための位相的補正である。
服を着替える順序は群作用に対応し、順序逆転は精神的な不快感を生じさせる。
ルームメイトが不可逆的な混乱を台所に残していると、僕はその破線を見つけて正規化する。
友人の一人は夜の研究会で新しいデッキ構築の確率的最適化について話していたが、僕はその確率遷移行列をスペクトル分解し、期待値と分散を明確に分離して提示した。
僕はふだんから、あらゆる趣味的活動をマルコフ過程や情報理論の枠組みで再解釈してしまう悪癖がある。
昨夜は対戦型カードのルールとインタラクションについても議論になった。
カード対戦におけるターンの構成や勝利条件、行動の順序といった基礎的仕様は、公式ルールブックや包括的規則に明確に定められており、例えばあるゲームではカードやパーツの状態を示すタップ/アンタップなどの操作が定式化されている(公式の包括規則でこれらの操作とそれに付随するステップが定義されている)。
僕はそれらを単純な操作列としてではなく、状態遷移系として表現し、スタックや応答の仕組みは可逆操作の非可換な合成として表現することを提案した。
実際の公式文書での定義を参照すると、タップとアンタップの基本的な説明やターンの段階が明らかにされている。
同様に、カード型対戦の別の主要系統では、プレイヤーのセットアップやドロー、行動の制約、そして賞品カードやノックアウトに基づく勝利条件が規定されている(公式ルールブック参照)。
僕はこれらを、戦略的決定が行なわれる「有限確率過程」として解析し、ナッシュ均衡的な構成を列挙する計算を試みた。
また、連載グラフィック作品について話題が及んだ。出版社の公式リリースや週次の刊行カレンダーを見れば、新刊や重要な事件がどう配置されているかは明確だ。
たとえば最近の週次リリース情報には新シリーズや重要な続刊が含まれていて、それらは物語のトーンやマーケティングの構造を読み解く手掛かりになる。
僕は物語的変動を頻度分析し、登場人物の出現頻度や相互作用のネットワークを解析して、有意なプロットポイントを予測する手法を示した。
夜遅く、友人たちは僕の提案する抽象化が読む側に何も還元しない玩具的言語遊びではないかと嘲笑したが、僕はそれを否定した。
抽象化とは情報の粗視化ではなく、対称性と保存則を露わにするための道具だ。
実際、位相的・圏論的表現は具体的計算を単に圧縮するだけでなく、異なる物理問題や戦略問題の間に自然な対応(functorial correspondence)を見出すための鍵を与える。
昨夜書き残したノートには、導来圏のある種の自己同型から生じる不変量を用いて、特定のゲーム的状況の最適戦略を分類するアルゴリズムスケッチが含まれている。
これを実装するにはまだ時間がかかるが、理論的な枠組みとしては整合性がある。
僕の関心は常に形式と実装の橋渡しにある。日常の儀式は形式の実験場であり、超弦理論の再定式化は理論の検算台だ。
隣人の小さな挨拶も、ルームメイトの不作法も、友人たちの軽口も、すべてが情報理論的に扱える符号であり、そこからノイズを取り除く作業が僕の幸福の一部だ。
午後には彼らとまた表面的には雑談をするだろうが、心の中ではいつものように位相写像と圏論的随伴関手の組を反芻しているに違いない。
僕は今、いつものように自分で定めた前夜の儀式を終えたところだ。
コーヒーは精密に計量した7.4グラム、抽出温度は92.3度で、これが僕の思考を最高の線形性と可逆性をもって保つ。
寝室のドアは常に北側に向けて閉める。ルームメイトは今夜も例の実験的なシンポジウム(彼はそれを自作フォーラムと呼んでいる)に夢中で、隣人はテレビの音を限界まで上げて下界の俗事を増幅している。
友人たちは集まって未知の戦術を試すらしいが、彼らの興味は僕の多層的位相空間理論の議論とは無関係だと見做している。僕にとっては、他人の雑音はただの非可逆なエントロピー増である。
今日は一日、超弦理論のある隠れた側面に没入していた。通常の記述では、弦は一次元的な振動として扱われるが、僕はそれを高次元カテゴリの対象として再解釈することに時間を費やした。
物理的場のモジュライ空間を単にパラメータ空間と見るのは不十分で、むしろそれぞれの極小作用の同値類が高次ホモトピーのラクタンスを持ち、ホモトピー圏の内部で自己双対性を示すような階層化されたモジュライを想定する。
局所的超対称は、頂点作用素代数の単純な表れではなく、より豊かな圏論的双対圏の射として表現されるべきであり、これにより散乱振幅の再合成が従来のFeynman展開とは異なる普遍的構造を獲得する。
ここで重要なのは、導来代数幾何学のツールを用い、特にスペクトラル的層とTMF(トポロジカル・モジュラー形式)に関する直観を組み合わせることで、保守量の整合性が位相的モジュライ不変量として現れる点だ。
もし君が数学に親しんでいるなら、これは高次のコホモロジー演算子が物理的対称性の生成子へとマップされる、といった具合に理解するとよいだろう。
ただし僕の考察は抽象化の階段を何段も上っているため、現行の文献で厳密に同一の記述を見つけるのは難しいはずだ。
僕は朝からこのアイデアの微分的安定性を調べ、スペクトル系列の収束条件を緩めた場合にどのような新奇的臨界点が出現するかを概念的に解析した。
結果として導かれるのは、従来の弦のモジュライでは見落とされがちな非整合な境界条件が実は高次圏の自己同値性によって救済され得る、という知見だった。
日常の習慣についても書いておこう。僕は道具の配置に対して強いルールを持つ。椅子は必ず机の中心線に対して直交させ、筆記用具は磁気トレイの左から右へ頻度順に並べる。
買い物リストは確率論的に最適化していて、食品の消費速度をマルコフ連鎖でモデル化している。
ルームメイトは僕のこうした整理法をうるさいと言うが、秩序は脳の計算資源を節約するための合理的なエンジニアリングに他ならない。
インタラクティブなエンタメについてだが、今日触れたのはある対戦的収集型カードの設計論と最新のプレイメタに関する分析だ。
カードの設計を単なる数値バランスの問題と見做すのは幼稚で、むしろそれは情報理論とゲーム理論が交差する点に位置する。
ドロー確率、リソース曲線、期待値の収束速度、そして心理的スケーリング(プレイヤーが直感的に把握できる複雑さの閾値)を同時に最適化しないと、ゲーム環境は健全な競技循環を失う。
友人たちが議論していた最新の戦術は確かに効率的だが、それは相手の期待値推定器を奇襲する局所的最適解に過ぎない。
長期的な環境を支えるには、デッキ構築の自由度とメタの多様性を保つランダム化要素が必要で、これは散逸系におけるノイズ注入に似ている。
一方、漫画を巡る議論では、物語構造と登場人物の情報エントロピーの関係に注目した。キャラクターの発話頻度や視点の偏りを統計的に解析すると、物語のテンポと読者の注意持続時間を定量化できる。
これは単なる趣味的な評論ではなく、創作の効率を測る一つの測度として有用だ。隣人はこれを聞いて「また君は分析に興味を持ちすぎだ」と言ったが、作品を合理的に解析することは否定されるべきではない。
夜も更け、僕は今日の計算結果をノートにまとめ、いくつかの概念図を黒板に描いた。友人が冗談めかしてその黒板を見ただけで頭痛がすると言ったとき、僕はそれを褒め言葉と受け取った。
知的努力はしばしば誤解を生むが、正しい理論は時として社会的摩擦を伴うのが常だ。
今は23時30分、コーヒーの残りはわずかで、思考の波形は安定している。
眠りに落ちる前に、今日導いた高次圏的視点でいくつかの演繹をもう一度辿り、明朝にはそれを更に形式化して論理体系に落とし込むつもりだ。
数学の最も抽象的な核心は、structured homotopy typesをファンクターとして扱い、それらの相互作用=dualities・correspondencesで世界を説明することに集約できる。
ここでいう構造とは、単に集合上の追加情報ではなく、加法や乗法のような代数的構造、位相的・解析的な滑らかさ、そしてさらにsheafやstackとしての振る舞いまで含む。
現代の主要な発展は、これらを有限次元的な点や空間として扱うのをやめ、∞-categoricalな言葉でfunctorial worldに持ち込んだ点にある。
Jacob Lurie の Higher ToposTheory / Spectral Algebraic Geometry が示すのは、空間・代数・解析・同値を一つの∞-topos的な舞台で同時に扱う方法論。
これにより空間=式や対象=表現といった古典的二分法が溶け、全てが層化され、higher stacksとして統一的に振る舞う。
この舞台で出現するもう一つの中心的構造がcondensed mathematicsとliquid的手法だ。
従来、解析的対象(位相群や関数空間)は代数的手法と混ぜると不整合を起こしやすかったが、Clausen–Scholze の condensed approach は、位相情報を condensed なファンクターとしてエンコードし、代数的操作とホモトピー的操作を同時に行える共通語彙を与えた。
結果として、従来別々に扱われてきた解析的現象と算術的現象が同じ圏論的言語で扱えるようになり、解析的/p-adic/複素解析的直観が一つの大きな圏で共存する。
これがPrismaticやPerfectoidの諸成果と接続することで、局所的・積分的なp-adic現象を世界規模で扱う新しいコホモロジーとして立ち上がる。
Prismatic cohomology はその典型例で、p-adic領域におけるintegralな共変的情報をprismという新しい座標系で表し、既存の多様なp-adic cohomology理論を統一・精緻化する。
ここで重要なのはfieldや曲線そのものが、異なるdeformation parameters(例えばqやpに対応するプリズム)を通じて連続的に変化するファミリーとして扱える点である。
言い換えれば、代数的・表現論的対象の同型や対応が、もはや単一の写像ではなく、プリズム上のファミリー=自然変換として現れる。
これがSpectral Algebraic Geometryや∞-categorical手法と噛み合うことで、従来の局所解析と大域的整数論が同一の高次構造として接続される。
Langlands 型の双対性は、こうした統一的舞台で根本的に再解釈される。
古典的にはautomorphicとGaloisの対応だったが、現代的視点では両者はそれぞれcategoriesであり、対応=functorial equivalence はこれら圏の間の高度に構造化された対応(categorical/derived equivalence)として現れる。
さらに、Fargues–Fontaine 曲線やそれに基づくlocal geometrization の進展は、数論的Galoisデータを幾何的な点として再具現化し、Langlands対応をモジュールcategorical matchingとして見る道を拓いた。
結果として、Langlands はもはや個別の同型写像の集合ではなく、duality ofcategoriesというより抽象的で強力な命題に昇格した。
この全体像の論理的一貫性を保つ鍵はcohesion とdescent の二つの原理。
cohesion は対象が局所的情報からどのようにくっつくかを支配し、descent は高次層化したデータがどの条件で下から上へ再構成されるかを規定する。
∞-topos と condensed/lquid の枠組みは、cohesion を定式化する最適解であり、prismatic や spectral構成はdescent を極めて精密に実行するための算術的・ホモトピー的ツール群を与える。
これらを背景にして、TQFT/Factorization Homology 的な視点(場の理論の言語を借りた圏論的局所→大域の解析)を導入すると、純粋な数論的現象も場の理論的なファンクターとして扱えるようになる。
つまり数学的対象が物理の場の理論のように振る舞い、双対性や余代数的操作が自然に現れる。
ここで超最新の価値ある進展を一言で述べると、次のようになる。
従来バラバラに存在した「解析」「位相」「代数」「表現論」「算術」の言語が、∞-categorical な場の上で一つに融解し、しかもその結合部(condensed +prismatic + spectral)の中で新しい不変量と双対性が計算可能になった、ということだ。
具体例としては、prismatic cohomology による integralp-adic invariants の導出、condensed approach による関数空間の代数化、そして Fargues–Fontaine 曲線を介した局所–大域のgeometrization が、categorical Langlands の実現可能性をこれまでより遥かに強く支持している点が挙げられる。
これらは単なる技法の集積ではなく、「数学的対象を高次圏として扱う」という一つの理念の具体化であり、今後の発展は新しい種の reciprocitylawsを生むだろう。
もしこの地図を一行で表現するならばこうなる。数学の最深部は∞-categories上のcohesiveなfunctorialityの理論であり、そこでは解析も代数も数論も場の理論も同じ言語で表現され、prismatic・condensed・spectral といった新しい道具がその言語を実際に計算可能にしている。
専門家しか知らない細部(例えばprismの技術的挙動、liquidvectorspaces の精密条件、Fargues–Fontaine上のsheaves のcategorical特性)、これらを統合することが今の最も抽象的かつ最有望な潮流である。
僕はいつものようにティーカップの正確な角度とティーバッグを引き上げるタイミング(45秒で引き上げ、分子運動が落ち着くのを確認する)にこだわりながら、ルームメイトがキッチンで不満げに微かに鼻歌を歌う音を聞いている。
隣人は夜遅くまでテレビを見ているらしく、ローファイのビートとドラマのセリフが建物内で交差する。
その雑音の中で僕の頭は例によって超弦理論の抽象化へと跳躍した。
最近は量子コヒーレンスをホモトピー的に扱う試みを続けていて、僕は弦空間を単に1次元媒介物と見るのではなく、∞-圏の内在的自己双対性を有する位相的モジュライ空間として再定義することを好む。
具体的には、標準的な共形場理論の配位子作用をドリブンな導来代数的幾何(derived algebraic geometry)の枠組みで再構成し、そこにモチーフ的な圏(motivic category)から引き戻した混合ホッジ構造を組み込んで、弦の振る舞いを圏論的に拡張された交代多様体のホモトピー的点として記述する考えを試している。
こうするとT-双対性は単に物理的対象の同値ではなく、ある種のエンドサイト(endomorphism)による自己同型として見なせて、鏡像対称性の一部が導来関手の自然変換として表現できる。
さらに一歩進めて、超対称性生成子を高次トポスの内部対象として取り扱い、グレーディングを∞-グループとして扱うと、古典的に局所化されていたノイズ項が可換的モジュール層の非可換微分形へと遷移することが示唆される。
もちろんこれは計算可能なテーラ展開に落とし込まなければ単なる言葉遊びだが、僕はその落とし込みを行うために新しく定義した超可換導来ホッジ複体を用いて、散発的に出現する非正則極を規格化する策略を練っている。
こういう考察をしていると、僕の机の横に無造作に積まれたコミックやTCG(トレーディングカードゲーム)のパックが逆説的に美しく見える。
今日はルームメイトと僕は、近日発売のカードゲームのプレビューとそれに伴うメタ(試合環境)について議論した。
ウィザーズ・オブ・ザ・コーストの最新のAvatar: TheLast Airbenderコラボが今月中旬にアリーナで先行し、21日に実物のセットが出るという話題が出たので、ルームメイトは興奮してプリリリースの戦略を立てていた。
僕は「そのセットが実物とデジタルで時間差リリースされることは、有限リソース制約下でのプレイヤー行動の確率分布に重要な影響を与える」と冷静に分析した(発表とリリース日程の情報は複数の公表情報に基づく)。
さらにポケモンTCGのメガ進化系の新シリーズが最近動いていると聞き、友人たちはデッキの再構築を検討している。
TCGのカードテキストとルールの細かな改変は、ゲーム理論的には期待値とサンプル複雑度を変えるため、僕は新しいカードが環境に及ぼすインパクトを厳密に評価するためにマルコフ決定過程を用いたシミュレーションを回している(カード供給のタイムラインとデジタル実装に関する公式情報は確認済み)。
隣人が「またあなたは細かいことを考えているのね」と呆れた顔をして窓越しにこちらを見たが、僕はその視線を受け流して自分のこだわり習慣について書き留める。
例えば枕の向き、靴下の重ね方(常に左を上にし、縫い目が内側に来るようにすること)、コーヒー粉の密度をグラム単位で揃えること、そして会話に入る際は必ず正しい近接順序を守ること。
これらは日常のノイズを物理学的に最適化するための小さな微分方程式だと僕は考えている。
夜は友人二人とオンラインでカードゲームのドラフトを少しだけやって、僕は相対的価値の高いカードを確保するために結合確率を厳密に計算したが、友人たちは「楽しければいい」という実に実務的な感覚で動くので、そこが僕と彼らの恒常的なズレだ。
今日はD&D系の協働プロジェクトの話題も出て、最近のStranger ThingsとD&Dのコラボ商品の話(それがテーブルトークの新しい入り口になっているという話題)はテーブルトップコミュニティに刺激を与えるだろうという点で僕も同意した。
こうして夜は深まり、僕はノートに数式とカートゥーンの切り抜きを同じページに貼って対照させるという趣味を続け、ルームメイトはキッチンで皿を洗っている。
今、時計は23:00を指している。僕は寝る前に、今日考えた∞-圏的弦動力学のアイデアをもう一度走査して、余剰自由度を取り除くための正則化写像の候補をいくつか書き残しておく。
日中は実験室的な刺激は少なかったが、思考の連続性を保つために自分なりの儀式をいくつかこなした。
起床直後に室温を0.5度単位で確認し(許容範囲は20.0±0.5℃)、その後コーヒーを淹れる前にキッチンの振動スペクトルをスマートフォンで3回測定して平均を取るというのは、たぶん普通の人から見れば過剰だろう。
だが、振動の微妙な変動は頭の中でのテンポを崩す。つまり僕の「集中可能領域」は外界のノイズに対して一種の位相同調を要求するのだ。
ルームメイトはその儀式を奇癖と呼ぶが、彼は観測手順を厳密に守ることがどれほど実務効率を上げるか理解していない。
隣人はその一部を見て、冗談めかして「君はコーヒーにフレームを当ててるの?」と訊いた。
風邪の初期症状かと思われる彼の声色を僕は瞬時に周波数ドメインで解析し、4つの帯域での振幅比から一貫して風邪寄りだと判定した。
友人たちはこの種の即断をいつも笑うが、逆に言えば僕の世界は検証可能で再現可能な思考で出来ているので、笑いもまた統計的に期待値で語るべきだ。
午前は論文の読み返しに費やした。超弦理論の現代的なアプローチは、もはや単なる量子場とリーマン幾何の掛け合わせではなく、導来代数幾何、モーダルなホモトピー型理論、そしてコヒーシブなホモトピー理論のような高次の圏論的道具を用いることで新たな言語を得つつある。
これらの道具は直感的に言えば空間と物理量の振る舞いを、同値類と高次の同型で記述するための言語だ。
具体的には、ブランデッドされたDブレーンのモジュライ空間を導来圏やパーフェクト複体として扱い、さらに場の有る種の位相的・代数的変形が同値関係として圏的に表現されると、従来の場の理論的観測量が新しい不変量へと昇格する(この観点は鏡映対称性の最近のワークショップでも多く取り上げられていた)。
こうした動きは、数学側の最新手法が物理側の問題解像度を上げている好例だ。
午後には、僕が個人的に気に入っている超抽象的な思考実験をやった。位相空間の代わりにモーダルホモトピー型理論の型族をステートとして扱い、観測者の信念更新を型の変形(モナド的な操作)としてモデル化する。
つまり観測は単なる測定ではなく、型の圧縮と展開であり、観測履歴は圏論的に可逆ではないモノイド作用として蓄積される。
これを超弦理論の世界に持ち込むと、コンパクト化の自由度(カラビヤウ多様体の複素構造モジュライ)に対応する型のファミリーが、ある種の証明圏として振る舞い、復号不能な位相的変換がスワンプランド的制約になる可能性が出てくる。
スワンプランド・プログラムは、実効場の理論が量子重力に埋め込めるかどうかを判定する一連の主張であり、位相的・幾何的条件が物理的に厳しい制限を課すという見立てはここでも意味を持つ。
夕方、隣人が最近の観測結果について話題にしたので、僕は即座に「もし時空が非可換的であるならば、座標関数の交換子がプランクスケールでの有意な寄与をもたらし、その結果として宇宙加速の時間依存性に微妙な変化が現れるはずだ。DESIのデータで示唆された減速の傾向は、そのようなモデルの一つと整合する」と言ってしまった。
隣人は「え、ホント?」と目を丸くしたが、僕は論文の推論と予測可能な実験的検証手順(例えば位相干渉の複雑性を用いた観測)について簡潔に説明した。
これは新しいプレプリント群や一般向け記事でも取り上げられているテーマで、もし妥当ならば観測と理論の接続が初めて実際のデータで示唆されるかもしれない。
昼食は厳密にカロリーと糖質を計算し、その後で15分のパルス型瞑想を行う。瞑想は気分転換ではなく、思考のメタデータをリセットするための有限時間プロセスであり、呼吸のリズムをフーリエ分解して高調波成分を抑えることで瞬間集中力のフロアを上げる。
ルームメイトはこれを「大げさ」と言うが、彼は時間周波数解析の理論が日常生活にどう適用されるか想像できていない。
午後のルーティンは必ず、机上の文献を3段階でレビューする: まず抽象(定義と補題に注目)、次に変形(導来的操作や圏論的同値を追う)、最後に物理的帰結(スペクトルや散乱振幅への影響を推定)。
この三段階は僕にとって触媒のようなもので、日々の思考を整えるための外骨格だ。
夜は少し趣味の時間を取った。ゲームについては、最近のメタの変化を注意深く観察している。
具体的には、あるカードゲーム(TCG)の構築環境では統計的メタが明確に収束しており、ランダム性の寄与が低減した現在、最適戦略は確率分布の微小な歪みを利用する微分的最適化が主流になっている。
これは実際のトーナメントのデッキリストやカードプールの変遷から定量的に読み取れる。
最後に今日の哲学的なメモ。理論物理学者の仕事は、しばしば言語を発明することに帰着する。
僕が関心を持つのは、その言語がどれだけ少ない公理から多くの現象を統一的に説明できるか、そしてその言語が実験可能性とどの程度接続できるかだ。
導来的手法やホモトピー的言語は数学的な美しさを与えるが、僕は常に実験への戻り道を忘れない。
理論が美しくとも、もし検証手順が存在しないならば、それはただの魅力的な物語にすぎない。
隣人の驚き、ルームメイトの無頓着、友人たちの喧嘩腰な議論は、僕にとっては物理的現実の簡易的プロキシであり、そこから生まれる摩擦が新しい問いを生む。
さて、20:00を過ぎた。夜のルーティンとして、机の上の本を2冊半ページずつ読む(半ページは僕の集中サイクルを壊さないためのトリックだ)
あと、明日の午前に行う計算のためにノートに数個の仮定を書き込み、実行可能性を確認する。
ルームメイトは今夜も何か映画を流すだろうが、僕は既にヘッドホンを用意してある。
ヘッドホンのインピーダンス特性を毎回チェックするのは習慣だ。こうして日が終わる前に最低限の秩序を外界に押し付けておくこと、それが僕の安定性の根幹である。
以上。明日は午前に小さな計算実験を一つ走らせる予定だ。結果が出たら、その数値がどの程度「美的な単純さ」と折り合うかを眺めるのが楽しみである。
弦は1次元の振動体ではなく、スペクトル的係数を持つ(∞,n)-圏の対象間のモルフィズム群として扱われる量子幾何学的ファンクタであり、散乱振幅は因子化代数/En-代数のホモトピー的ホモロジー(factorization homology)と正の幾何(amplituhedron)およびトポロジカル再帰の交差点に現れるという観点。
従来のσモデルはマップ:Σ → X(Σは世界面、Xはターゲット多様体)と見るが、最新の言い方では Σ と X をそれぞれ導来(derived)モジュライ空間(つまり、擬同調的情報を含むスタック)として扱い、弦はこれら導来スタック間の内部モルフィズムの同値類とする。これによりボルツマン因子や量子的補正はスタックのコヒーレント層や微分グレード・リー代数のcohomologyとして自然に現れる。導来幾何学の教科書的基盤がここに使われる。
弦の結合・分裂は単なる局所頂点ではなく、高次モノイド構造(例えば(∞,2)あるいは(∞,n)級のdaggerカテゴリ的構成)における合成則として表現される。位相欠陥(defects)やDブレインはその中で高次射(higher morphism)を与え、トポロジカル条件やフレーミングは圏の添字(tangentialstructure)として扱うことで異常・双対性の条件が圏的制約に変わる。これが最近のトポロジカル欠陥の高次圏的記述に対応する。
局所演算子の代数はfactorization algebra / En-algebraとしてモデル化され、散乱振幅はこれらの因子化ホモロジー(factorization homology)と、正の幾何(positive geometry/amplituhedron)的構造の合流点で計算可能になる。つまり「場の理論の演算子代数的内容」+「ポジティブ領域が選ぶ測度」が合わさって振幅を与えるというイメージ。Amplituhedronやその最近の拡張は、こうした代数的・幾何学的言語と直接結びついている。
リーマン面のモジュライ空間への計量的制限(例えばマルザカニの再帰類似)から得られるトポロジカル再帰は、弦場理論の頂点/定常解を記述する再帰方程式として働き、相互作用の全ループ構造を代数的な再帰操作で生成する。これは弦場理論を離散化する新しい組合せ的な生成法を与える。
AdS/CFT の双対性を単なる双対写像ではなく、導来圏(derivedcategories)やファンクタ間の完全な双対関係(例:カテゴリ化されたカーネルを与えるFourier–Mukai型変換)として読み替える。境界側の因子化代数とバルク側の(∞,n)-圏が相互に鏡像写像を与え合うことで、場の理論的情報が圏論的に移送される。これにより境界演算子の代数的性質がバルクの幾何学的スタック構造と同等に記述される。
パス積分や場の設定空間を高次帰納型(higher inductive types)で捉え、同値関係やゲージ同値をホモトピー型理論の命題等価として表現する。これにより測度と同値の矛盾を型のレベルで閉じ込め、形式的な正則化や再正規化は型中の構成子(constructors)として扱える、という構想がある(近年のHoTTの物理応用ワークショップで議論されている方向性)。
「弦=導来スタック間の高次モルフィズム(スペクトル係数付き)、相互作用=(∞,n)-圏のモノイド合成+因子化代数のホモロジー、振幅=正の幾何(amplituhedron)とトポロジカル再帰が選ぶ微分形式の交差である」
この言い方は、解析的・場の理論的計算を圏論・導来代数幾何・ホモトピー理論・正の幾何学的道具立てで一枚岩にする野心を表しており、実際の計算ではそれぞれの成分(因子化代数・導来コヒーレント層・amplituhedronの体積形式・再帰関係)を具体的に組み合わせていく必要がある(研究は既にこの方向で動いている)。
まず対象を抽象化するために、物理系は局所演算子代数のネットワーク(局所性を持つモノイド圏あるいは因子化代数)として扱う。
境界理論はある可換(または E_n)因子化代数 A を与え、これに対して状態空間は A の正値線型汎関数(GNS構成で得られる正規表現の圏)として扱う。
重力的バルク側は、境界因子化代数のコホモロジカル双対(例:Koszul双対や因子化ホモロジーに基づくスペクトル的拡張)としてモデル化される。
ホログラフィーは単なる同値性ではなく、境界のモノイド的データとバルクの因子化代数的データの間の高次圏的((∞,n)-圏)双対性であり、この双対性はホモトピー的拘束(同値の空間)を保つ関手の同型として書ける。
これをより具体的に言えば、境界の C^*-あるいは von Neumann代数の圏と、バルクに対応する因子化代数(局所的場の代数を与える E_n-代数)の間に、Hochschild/cyclicホモロジーと因子化ホモロジーを媒介にしたKoszul型双対が存在すると仮定する。
境界から見た相互作用や散乱振幅は、境界因子化代数上の積(オペラド的構造)として表され、バルクの幾何情報はそのホモロジー/コホモロジーに符号化される。
エントロピーとエンタングルメントの幾何化は情報幾何学的メトリックに還元される。すなわち、量子状態空間上の量子フィッシャー情報(量子Fisher・Bures距離)や相対エントロピーは、接続と計量を与えるテンソルと見なせる。
これにより、テンソルネットワークは単なる数値的近似ではなく、グラフ圏からヒルベルト空間への忠実なモノイド的関手である:グラフの各節点に E_n-代数の有限次元表現を割り当て、辺は双対化(コアリフト)の演算子であり、ネットワーク全体は因子化代数の状態和(state-sum)を与える。
MERA や PEPS、HaPPYコードは、この関手が持つ特定の圧縮/階層性(再帰的モノイド構造)を体現しており、cMERA はその連続極限である。
テンソルネットワークが幾何を作るとは、エントロングルメント計量(情報計量)から接続とリーマン的性質を再構成する手続きを意味し、これが空間的距離や曲率に対応するというのがit from qubits の数学的内容である。
さらに情報回復(Petz復元写像など)や相対エントロピーのモノトニシティは、エントロングルメントウェッジ再構成の圏論的条件(右随伴を持つ関手の存在)として表現される。
すなわち、境界演算子代数からバルク因子化代数への埋め込みが完全に圏論的な復元子(adjoint)を持つときに、局所的情報の回復が可能となる。
ER=EPR はこの文脈でホモトピー的コボルディズムとして読み替えられる。量子相互作用で結ばれた二系(高次圏の対象としての二点分割状態)は、バルクのコボルディズム類(ワームホール的繋がり)に対応する同値類を持ち、局所ユニタリ変換による同値類がコボルディズムの同位類と一致するという予想的対応を述べる。
言い換えれば、局所ユニタリ同値で分類されるエンタングルメントのコホモロジーは、バルクのホモトピー的結合(位相的/幾何的接続)を決定する。
ブラックホールの熱力学的性質は、トモイタ=タカサキ理論(Tomita–Takesaki modulartheory)やコンネスの周期写像が関与する演算子代数のモジュラー流として自然に現れる。
特に、ブラックホール外部におけるモジュラーハミルトニアンは境界状態の相対エントロピーに関連し、そのフローはバルクの時間発展に対応する(模擬的にはKMS状態と熱平衡)。
サブファクター理論とジョーンズ指数は、事象地平線をまたぐ情報の部分代数埋め込みの指標として機能し、情報損失やプライバシー(情報の遮蔽)は部分代数の指数と絡み合う。
ブラックホールの微視的自由度のカウントは、やはり境界因子化代数の適切な指数(譜的インデックス、K理論的量)に帰着する。
超弦理論的な追加自由度(多様体のモジュライ空間や D-ブレーンの圏的記述)は、バルク側因子化代数の係数系(係数 E_n-代数やスペクトラル層)として取り込まれ、モチーフ的/導来スタック的手法(derived stacks, spectral algebraic geometry)で整然と扱える。
これにより、弦の振る舞いは境界オペレータ代数の高次幾何学的変形(deformationtheory)と同値的に記述されることが期待される。
この全体構造を統一する言葉は高次圏的因子化双対である。物理的理論は、局所的オペレータのモノイド圏、状態の圏、そして因子化ホモロジーを媒介にした双対関手系から成り、テンソルネットワークはそれらの具体的表現=有限モデルとして働き、情報幾何学はそれらの間に滑らかな計量を与える。
したがって「it from qubits」は、局所的量子代数の圏論的再配列が(情報計量を通じて)幾何学的構造を生み出すという主張に還元され、ER=EPR はエンタングルメントの同値類とバルクのコボルディズム同位類を結ぶ高次圏的同型命題として再表現され、ブラックホール熱力学や弦の自由度はその圏論的・ホモトピー的不変量(ホッジ理論的/K理論的指数、モジュラーデータ)として測られる。
僕は今、いつもの座席に鎮座している。ルームメイトはリビングのソファでパズルゲームを無言で進めており、隣人はサブカル系の配信をしているらしく時折笑い声が廊下を渡ってくる。
友人たちはグループチャットで熱く同人の出来や新連載のガチャ確率について論争している。
僕の一日は厳密に区切られていて、朝は必ず8時に起床、コーヒーの抽出器具を90秒で予熱し、温度は92.3℃±0.2℃に保つという無駄に精細な儀式がある。
靴下は左足から履く。出勤前の15分は必ず抽象数学のノートを眺め、最近は圏論的位相場のホモトピー的反復と超弦モジュライのmeta-圏的安定化について自問している。
これは専門用語の羅列ではなく、僕にとっては手を洗うのと同じくらい生理的な行為であり、その行為を飛ばすと一日が微妙に狂うので飛ばすことはめったにない。
仕事が終わった今も、僕は一日の終わりに形式的整合性を取るためのルーティンを持っている。
具体的には、机上のコップは時計回りに90度ずつ回転させて元の位置に戻す、明かりのスイッチを一回押して3秒待ち、もう一度押すといった小さなチェックポイントを踏む。
これは合理的かどうかを問う人がいるだろうが、僕にとってはエラー訂正符号のようなものだ。失敗を検出すると自動的にその日のメンタル状態のトレースが始まり、友人たちの雑談に混じる気力が萎える。
超弦理論に関して今日述べることは極めて抽象化され、現実の誰が読んでも「それが何を意味するのか」を即座に把握できないように意図している。
僕は最近、モノイド対象としてのストリング世界面の圏を、圏論的対称化子(コクセター的ではなく、もっと抽象的に、位相的量子群の代数的類・モジュライ化)を用いて再定義する実験をしている。
言い換えれば、従来の共形場理論的な世界面パラメータ空間を、非可換ホモトピー論のフィルタ列で再帰的に層化し、その各層におけるファイバーの自己同型群をモナドとして扱うことで、局所的に見える弦状態の同値類を圏的に集約する。
さらに、圏の圏(2-圏)に対する新しい安定化の概念を導入して、通常のK理論的分類とは別の不変量が現れることを示唆する予備的計算結果がある(ここでは具体的数式を列挙しないが、ホモロジーの級数展開における位相的位相因子の再正規化が鍵となる)。
この構成を、最新の抽象数学的モジュール接続概念と結びつけると、我々が従来想定していたスペース-状態対応の双対性が、もっと弱い条件(例えば圏的可換性の高次緩和)で成立する可能性が開ける。
加えて、僕はこの考えをある講義資料やトークの示唆と照らして取り入れており、その資料は概念的な跳躍と直感的な図示を巧みに使っているので、僕の現在の探索にとって非常に有益だった。
僕は「誰も理解できないものを言語化する」ことに快感を覚えるタイプだが、ここで言っているのは自己満足のためではなく、圏的再構成が実際に計算上の省力化をもたらすかを検証するための試行でもある。
ある意味で、これは純粋数学者が夜中に自分だけの公理系をいじるのと同じ行為だが、僕の場合はそれを出社前の歯磨きに組み込んでしまっているので、周囲は迷惑かもしれない。
食事の配列はプレート上の分布エントロピーを最小化する向きで常に配置し、週に一度は手製のスキルツリー表を更新して趣味的投資の累積効用を整数化している。
コミックは最新巻が出ると即座にページごとのフレーム密度と作画のトーンワークを技術的に解析し、特に背景のディテールに含まれるトーンの反復パターン(いわば視覚的フーリエ成分)をスコア化する。
ゲームに関してはガチ勢的態度を崩さず、メタ的な語りを排してシステムのギミック、ドロップ率、レベリング曲線、そして対戦環境のテンプレート化された最適戦略について延々と解析する。
ただしゲームやコミックに対しては「空間」や「力学」といった語はなるべく避け、代わりに「状態遷移図」や「入力遅延とフレーム落ちの統計的扱い」など工学的・計算機的に言語化する。
たとえば今日友人が語っていた新作のギミックについては、その期待効用をELO的な評価尺度でランク付けして論争に勝とうとしたが、連中は「推し」を盾に論理を流してくるので僕はたまに脱力する。
だが脱力する暇は短く、夜の自習時間には再び圏論的比喩に戻り、各行動の符号化を試す。
日常の細部も大事にしている。玄関の鍵は4回回すのが正しいというオカルトじみたルールを持っているが、これは単なる迷信ではなく、僕の内部的なチェックサムである。
友人たちはこれを笑うが、彼らもまた各自の無意味な儀式に固執している。
コミュニティでの嗜好(推しキャラ、嫁、沼の深さ)に関しては妙に合理的で、僕はデータベースを自前で持っている。
各キャラの台詞数、出番頻度、描写の感情強度をパラメータ化し、二次創作が生成される確率空間を推定する実験をしている。
この種のオタク計量は笑われがちだが、実際にはコンテンツ開発や同人活動の動向を予測するには有用だ。
眠りに入る前に、僕は明日の論文ノートに小さな疑問を三つ書き付ける。
第一は、先に述べた圏的安定化が有限次元表現に落ちる際の可逆元の振る舞い、第二は同構クラスの計算可能性のアルゴリズム的複雑さ、第三は趣味領域における情報量の測度とその心理的飽和点の関係である。
これらを洗い出しておけば、僕は安心して眠れる。
ルームメイトがゲームのボスを討伐した歓声が聞こえ、隣人の配信が締めに入る。友人たちのチャットは未だヒートアップしている。
僕は日記を閉じ、明日のコーヒーの豆を2グラムだけ余分に計量しておく。これは単なる癖ではない。それは帰納的に我が生活を安定化するための小さな公理群だ。