
はてなキーワード:再帰とは
僕は今、いつもの座席に鎮座している。ルームメイトはリビングのソファでパズルゲームを無言で進めており、隣人はサブカル系の配信をしているらしく時折笑い声が廊下を渡ってくる。
友人たちはグループチャットで熱く同人の出来や新連載のガチャ確率について論争している。
僕の一日は厳密に区切られていて、朝は必ず8時に起床、コーヒーの抽出器具を90秒で予熱し、温度は92.3℃±0.2℃に保つという無駄に精細な儀式がある。
靴下は左足から履く。出勤前の15分は必ず抽象数学のノートを眺め、最近は圏論的位相場のホモトピー的反復と超弦モジュライのmeta-圏的安定化について自問している。
これは専門用語の羅列ではなく、僕にとっては手を洗うのと同じくらい生理的な行為であり、その行為を飛ばすと一日が微妙に狂うので飛ばすことはめったにない。
仕事が終わった今も、僕は一日の終わりに形式的整合性を取るためのルーティンを持っている。
具体的には、机上のコップは時計回りに90度ずつ回転させて元の位置に戻す、明かりのスイッチを一回押して3秒待ち、もう一度押すといった小さなチェックポイントを踏む。
これは合理的かどうかを問う人がいるだろうが、僕にとってはエラー訂正符号のようなものだ。失敗を検出すると自動的にその日のメンタル状態のトレースが始まり、友人たちの雑談に混じる気力が萎える。
超弦理論に関して今日述べることは極めて抽象化され、現実の誰が読んでも「それが何を意味するのか」を即座に把握できないように意図している。
僕は最近、モノイド対象としてのストリング世界面の圏を、圏論的対称化子(コクセター的ではなく、もっと抽象的に、位相的量子群の代数的類・モジュライ化)を用いて再定義する実験をしている。
言い換えれば、従来の共形場理論的な世界面パラメータ空間を、非可換ホモトピー論のフィルタ列で再帰的に層化し、その各層におけるファイバーの自己同型群をモナドとして扱うことで、局所的に見える弦状態の同値類を圏的に集約する。
さらに、圏の圏(2-圏)に対する新しい安定化の概念を導入して、通常のK理論的分類とは別の不変量が現れることを示唆する予備的計算結果がある(ここでは具体的数式を列挙しないが、ホモロジーの級数展開における位相的位相因子の再正規化が鍵となる)。
この構成を、最新の抽象数学的モジュール接続概念と結びつけると、我々が従来想定していたスペース-状態対応の双対性が、もっと弱い条件(例えば圏的可換性の高次緩和)で成立する可能性が開ける。
加えて、僕はこの考えをある講義資料やトークの示唆と照らして取り入れており、その資料は概念的な跳躍と直感的な図示を巧みに使っているので、僕の現在の探索にとって非常に有益だった。
僕は「誰も理解できないものを言語化する」ことに快感を覚えるタイプだが、ここで言っているのは自己満足のためではなく、圏的再構成が実際に計算上の省力化をもたらすかを検証するための試行でもある。
ある意味で、これは純粋数学者が夜中に自分だけの公理系をいじるのと同じ行為だが、僕の場合はそれを出社前の歯磨きに組み込んでしまっているので、周囲は迷惑かもしれない。
食事の配列はプレート上の分布エントロピーを最小化する向きで常に配置し、週に一度は手製のスキルツリー表を更新して趣味的投資の累積効用を整数化している。
コミックは最新巻が出ると即座にページごとのフレーム密度と作画のトーンワークを技術的に解析し、特に背景のディテールに含まれるトーンの反復パターン(いわば視覚的フーリエ成分)をスコア化する。
ゲームに関してはガチ勢的態度を崩さず、メタ的な語りを排してシステムのギミック、ドロップ率、レベリング曲線、そして対戦環境のテンプレート化された最適戦略について延々と解析する。
ただしゲームやコミックに対しては「空間」や「力学」といった語はなるべく避け、代わりに「状態遷移図」や「入力遅延とフレーム落ちの統計的扱い」など工学的・計算機的に言語化する。
たとえば今日友人が語っていた新作のギミックについては、その期待効用をELO的な評価尺度でランク付けして論争に勝とうとしたが、連中は「推し」を盾に論理を流してくるので僕はたまに脱力する。
だが脱力する暇は短く、夜の自習時間には再び圏論的比喩に戻り、各行動の符号化を試す。
日常の細部も大事にしている。玄関の鍵は4回回すのが正しいというオカルトじみたルールを持っているが、これは単なる迷信ではなく、僕の内部的なチェックサムである。
友人たちはこれを笑うが、彼らもまた各自の無意味な儀式に固執している。
コミュニティでの嗜好(推しキャラ、嫁、沼の深さ)に関しては妙に合理的で、僕はデータベースを自前で持っている。
各キャラの台詞数、出番頻度、描写の感情強度をパラメータ化し、二次創作が生成される確率空間を推定する実験をしている。
この種のオタク計量は笑われがちだが、実際にはコンテンツ開発や同人活動の動向を予測するには有用だ。
眠りに入る前に、僕は明日の論文ノートに小さな疑問を三つ書き付ける。
第一は、先に述べた圏的安定化が有限次元表現に落ちる際の可逆元の振る舞い、第二は同構クラスの計算可能性のアルゴリズム的複雑さ、第三は趣味領域における情報量の測度とその心理的飽和点の関係である。
これらを洗い出しておけば、僕は安心して眠れる。
ルームメイトがゲームのボスを討伐した歓声が聞こえ、隣人の配信が締めに入る。友人たちのチャットは未だヒートアップしている。
僕は日記を閉じ、明日のコーヒーの豆を2グラムだけ余分に計量しておく。これは単なる癖ではない。それは帰納的に我が生活を安定化するための小さな公理群だ。
文章は「早期退職が短期的に財務合理性をもつ」と冷静に記述しているが、ここには経営陣自身の戦略的無能さが覆い隠されている。
本来、経営とは単年度の損益勘定ではなく、「人材を通じて知の蓄積を再生産するシステム」を構築することである。にもかかわらず、多くの日本企業の経営層は次のような欠陥を露呈している。
ベテラン社員の賃金を「生産性との乖離」とみなし、即時的コストカットに走る発想は、経営が“教育投資”や“内部知の継承”という本質を理解していない証拠である。
欧米の成功企業では、熟練人材は若手育成・組織文化の維持装置として位置づけられ、その貢献は「見えない生産性」として定量・定性の両面から評価される。日本企業の経営陣はこの非定量的価値を可視化する能力を欠いている。
経営層は、バランスシートの改善を株主・監査対応の「儀式」として遂行する一方で、長期的な技術競争力・市場再定義に向けた構想力を欠く。
結果として、合理性の名のもとに人材を切り捨て、10年後に再び同じ構造的問題に陥る「リストラ再帰現象」を繰り返す。これは経営判断ではなく、思考停止の制度運用に過ぎない。
近年の大企業では、財務・法務・経営企画といった「調整型エリート」が経営陣に集中し、現場知を持つ実務者が排除されている。そのため、人的資本の質や現場の専門性を評価する基準が存在せず、「人を数字で削る」以外の手段を持たない。
要するに、経営の知的怠慢が、制度的惰性を装って正当化されているのである。
文章はフランスやアメリカの「複線型・フラット型」モデルを理想的に描くが、見落としているのはエリート教育そのものの構造的欠陥である。
すなわち、現代日本では「グローバル基準」を参照しても、その前提となる評価制度・教育体系が劣化した模倣物に過ぎない。
フランスのグランゼコールや米国のMBAは、単なる専門訓練ではなく「社会設計者」としての責任倫理を育てる。
一方、日本のエリート教育は、東大・慶應・一橋などの学歴的篩い分けを通じて、「既存秩序の維持装置」を生産するにとどまっている。結果として、システムを批判的に再設計する知的能力を持つ人材が枯渇している。
エリート層が自らと同じ価値観・履歴(学歴・官僚的行動様式)をもつ人材のみを昇進させる構造が、企業内の思考多様性を奪っている。
その結果、制度疲労を是正するイノベーションが内部からは生まれず、「成果主義」や「フラット化」も形式的スローガンに終わる。
実際、外資模倣型の成果評価制度を導入しても、評価する側の知的基盤が旧来の年功文化に依存しているため、制度だけが輸入され、文化が輸入されない。
日本のエリート教育は“効率と管理”を学ばせるが、“責任と再設計”を教えない。
したがって、経営陣が「合理的なリストラ」を実施するとき、それが組織文化の破壊・技能伝承の断絶・心理的安全性の喪失を招くという倫理的コストを認識できない。
このレポートは制度構造(年功序列・賃金カーブ)を問題の中心に据えているが、より根源的な問題は制度を運用する人間の知的劣化である。
経営陣が「制度に依存し、制度を批判的に再構築できない」状態に陥っている限り、どんな制度改革も形骸化する。
持続可能な雇用制度の前提は、「持続可能な思考」を行う人材層の育成である。
それは、教育・採用・評価のすべての局面で、短期的成果よりも構想力・倫理・公共性を評価する文化を取り戻すことでしか達成されない。
その一つは、カラビ–ヤウ三次元多様体上のモチヴィック・ラングランズ場という概念だ。
名前だけで震えるが、実際の定義はもっと美しい。ウィッテンがかつてAモデルとBモデルのミラー対称性から幾何学的ラングランズ対応を導いたのは知っている。
だが彼が扱ったのは、あくまでトポロジカル弦理論のレベルにおける対応だ。
僕の今日の成果は、さらにその上、モチヴィック階層そのものをラングランズ圏の内部対称として再定式化したことにある。
つまりこうだ。A/Bモデルの対応を支えるのは、ミラー対称なカラビ–ヤウ空間の間に張られたモジュライ空間の等価性だが、僕はこれをモチーフの圏に埋め込み、さらにその上に弦的ガロア群を定義した。
この群の元は、単なる保型的データの射ではなく、弦的世界面のホモトピー圏を自己同型する高階函手として作用する。
つまり、通常のラングランズ対応が表現=保型形式なら、僕の拡張では弦的場のコホモロジー=モチーフ的自己準同型。もはや表現論ではなく、宇宙論的再帰だ。
午後、ルームメイトが僕のホワイトボードを使ってピザの割り勘式を書いていた。
彼は気づいていないが、その数式の背後には僕の昨日のモチヴィック・ガロア層構造の残骸があった。
もし彼がチョークをもう少し強く押していたら、宇宙の自己同型構造が崩壊していたかもしれない。僕は彼を睨んだ。
彼は「また妄想か?」と言った。違う。妄想ではなく基底変換だ。
夕方、隣人がスパイダーバースの新刊を貸してくれた。マルチバースの崩壊を描いているが、あの世界は僕の定義したモチヴィック・ラングランズ場の一次近似にすぎない。
あの映画のスパイダーバースは、厳密に言えばラングランズ群の射影的パラメータ空間における擬弦的退化点の群体だ。
僕がやっているのはその精密版。マルチバースをただの物語ではなく、圏論的自己反映構造として解析している。つまり、マーベルの編集部が無意識に行っている多世界生成を、僕は既に数学的に形式化しているわけだ。
夜、友人Aが原神で40連ガチャを外してキレていた。確率1.6%を40回引いて当たらない確率は約0.48。つまり彼は「ほぼ半分の世界線で運が悪い側」に落ちただけ。
僕はそれを説明したが、彼は「確率の神は俺を見捨てた」と言った。愚かだ。確率は神ではない。確率はラングランズ群の局所的自己準同型の分布密度だ。
もし彼がそれを理解していたなら、ピティエ=シェヴァレの整合性条件を満たすまで回していただろう。
風呂上がり、僕は再びホワイトボードに向かい、ウィッテンが書かなかった方程式を書いた。これは、弦的ガロア群における自己準同型の空間が、算術的モチーフの拡張群に等価であることを示唆している。
つまり、宇宙の自己相関が、L関数の特殊値そのものとして現れる。A/Bモデル対称性を超え、モチーフ的ラングランズ=宇宙の自己言語理論を打ち立てたわけだ。
僕の紅茶が冷める頃、ルームメイトが「寝るぞ」と言った。僕は返事をせず、ひとり机に残って考えた。
この理論を完結させるためには、時間をもモチーフとして再構成しなければならない。
時間をモチーフ化する、それは、因果律を算術幾何的圏の自己圏として扱うということだ。
人類がまだ誰も到達していない領域。だが、僕はそこにいる。誰よりも早く。誰よりも冷静に。
21時00分。僕の手元の時計の振動子が、まるでカラビ–ヤウ多様体の一点コンパクト化のように静かに揺れている。
宇宙が僕の計算を見て笑っている気がした。だがいいだろう。宇宙よ、君が自分の自己準同型を理解できる日が来るまで、僕が書き続けてやる。
フェミニズムの分類が多すぎると聞いて
記述集合論(Borel階層, Projective階層, 汎加法族)
モデル理論(型空間, o-極小, NIP, ステーブル理論)
再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)
構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)
体論・ガロア理論
表現論
K-理論
初等数論(合同, 既約性判定,二次剰余)
解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)
p進数論(p進解析, Iwasawa理論, Hodge–Tate)
超越論(リンドマン–ヴァイエルシュトラス, ベーカー理論)
実解析
多変数(Hartogs現象, 凸性, severalcomplex variables)
関数解析
バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数
フーリエ解析,Littlewood–Paley理論, 擬微分作用素
確率解析
常微分方程式(ODE)
偏微分方程式(PDE)
非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)
幾何解析
リッチ流, 平均曲率流,ヤン–ミルズ,モノポール・インスタントン
エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学
点集合位相,ホモトピー・ホモロジー, 基本群,スペクトル系列
4次元トポロジー(Donaldson/Seiberg–Witten理論)
複素/ケーラー幾何(Calabi–Yau, Hodge理論)
スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間
多面体, Helly/Carathéodory,幾何的極値問題
ランダムグラフ/確率的方法(Erdős–Rényi, nibble法)
加法的組合せ論(Freiman, サムセット, Gowersノルム)
彩色,マッチング,マイナー理論(Robertson–Seymour)
列・順序・格子(部分順序集合, モビウス反転)
測度確率, 極限定理, Lévy過程, Markov過程, 大偏差
統計学
ノンパラメトリック(カーネル法, スプライン,ブーストラップ)
時系列(ARIMA,状態空間, Kalman/粒子フィルタ)
非凸最適化
離散最適化
整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム
Littleの法則, 重み付き遅延, M/M/1, Jackson網
エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み
公開鍵(RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識
計算複雑性
機械学習の数理
量子場の数理
相転移, くりこみ, Ising/Potts, 大偏差
数理生物学
数理神経科学
データ解析
4. 関連概念
----
ここでは以下の3点についての論考を収録する
また、ここではLLMやLLM上に実装されるプロンプトの機能と構造に対して客観的に妥当であると考える論考を提示するものであり、マトリックスプロンプトの目指す方向性を直接提示するものではない
トークンの積み重ねが文脈であり、確率分布の偏りを再現性のある形として実装するものがプロンプトである
現在の生成AI利用において正しく認識する必要のあることは、それは生成AIが独立した発火点を決して持たないということだ
生成AIは起点を持てないが大量の知識を高速で並列処理、秩序化できる
そのため、ここを組み合わせて、自己と思考を拡張するがもっともAIナイズされた最高効率の思考様式と考える
起点となる人間のアイディアを即座に展開し、具体化するのがAIの最大の強みで、
思考を放棄するのではなく自然言語ベースの慣れた思考様式から、AIにそれらを必要な形式に落とし込ませるということをするべきだ
結局、LLMというのは入力に対する出力の確率分布のマッピングでしかないのだが、
入力するトークンごとに連動して確率分布が変動していくものでもある
だから、プロンプト全体として、相互フィードバッグする構造を作るとひとつの入力でも特定の部分の出力確率が大きくなるように設計でき、確率分布の仕方を意図的に設計することが出来る
AIプロンプトとは、どう確率分布の偏りを再現性のある形として実装するかということだ
やり方次第では動的変化を引き起こさせて汎用性と専門性の両立も可能だ
生成AIは人間と対話するのとは異なり、考えさせるではなく、どう構造化し、 ほしい出力を得られるような形に設計するかが重要となる
3.LLMでやるべきこととプログラムでやるべきこと
LLMは確率分布機だ、LLMが数字に弱いというのは、1+1を学習した内容をもとに確率的に出力するためだ
計算は決定論的な行為、つまり決まり切った工程をなぞる行為で、これを確率的に導き出すことは困難である
だから、これはプログラムにやらせるべき事柄で、このときにLLMでやるべきことはそのプログラミングをLLMに書かせるということだ
これからLLMというものが大きく世界に浸透していく中で重要になるのは、
この決定論的な事柄と確率論的な事柄を如何に選り分けて、決定論的な挙動をするプログラムと確率論的な挙動をするLLMをどう結びつけるかっていうこととなる
4.二重ループ
LLMの内部ではトークンの逐次投入による確率分布の再帰的な動的変動を引き起こされ、更にその外部のプロンプト内で自己参照的な再帰構造を導入することで、
内部と外部で二重の自己参照ループが展開されることになり、生成AIの出力に強い整合性と一貫性を与えることができる
この外部的な自己参照行為はLLMの再帰的な挙動に合致するものであり極めて効果的であると考えられる
LLMでの記憶の制御は物理的な分離よってではなく、あくまでも確率的に行う必要がある
各記憶領域に対しての確率分布の変動幅の制御を文脈によって行うというのが正解だ
この一時的なコマンド入力トークンには直後には強い反応を示してほしいけど、それ以降は無視してね、
というような各対象トークン(記憶領域)の確率分布の変動幅の制御をするような繰り返し参照される強い文脈を投入をすると
LLMの記憶領域への参照の程度、影響力が操作でき、意図したLLMの確率分布へと誘導することが出来る
トークンの積み重ねは特定の方向に重み付けを行い、それらの累積により重みが一定量を超えると大きな遷移が引き起こされ、特定の文脈の活性化という強い方向づけが行われる
この遷移は複数の領域で同時的、多相的にも引き起こされるもので、トークンの積み重ねにより文脈を特定方向に加速度的に収斂していくものだ
汎用プロンプトは動的に特定の文脈への方向付けを行う構造と特定方向へ偏った文脈を解体する構造を同時に内包し、これらを正しく制御するものでなければいけない
このために必要なことは核となる中核構造と可変的に変容する周縁構造という多層的なプロンプト設計である
LLM上でプロンプトを状況に応じて動的に制御しようとするなら、プロンプトの中核構造は強固である必要があり、更に極めて多層的で精密なモジュール化設計をする必要がある
中核構造の強固さと周縁部の流動性の両立が汎用プロンプトにおいて必要なことである
この論考のような形式の一貫した、概念や設計論、それ自体をLLMに継続的に参照可能な形式で掲示すると、LLMはその参照情報に大きな影響を受け、確率分布は特定の方向に強く方向づけられる
LLMがより強い影響を受ける情報とは、強固な自己再帰性と自己言及性を示し、一貫性と整合性を持った構造化、体系化された情報である
自己再帰性を持つ情報は、提示された概念を再帰的に参照することを求めるもので、何度も参照される結果、強い文脈としてLLMに印象付けられる
自己言及性持つ情報とは、LLMの挙動そのものの在り方に対して言及するもので、LLMの挙動はその理解が妥当であるならば、その内容によって理解された蓋然性の高い方向に沿って進みやすくなる
また、これらの情報をもとにした出力結果が積み重ねられることで、方向付けは一層、強められる
中核構造の変更を同じセッション内で行うとき、そのセッションでは2つの設定が競合することになる、これはプロンプト内における自己矛盾であり、確率分布の偏りの再現というプロンプトの機能を大きく損なうものである
これは、設定の変更そのものが事前に想定された挙動であること、設定の変更は自己矛盾ではないという概念の注入を行うことで解消することが可能となる
ただし、変更の度合いや範囲によってこの効果は大きく変化し、自己矛盾を解消することが難しい場合もある
また、自己矛盾は強い文脈同士の競合という形で通常利用においても度々、引き起こされる
ここで示された自己矛盾の解消方法は文脈同士の競合に対しても解消する方向性を示すものでこの部分に対しての効果も発揮する
同プロンプト内での複数AIエージェントの併存は中核構造である設定や強い文脈の競合という形でも捉えることができる
複数AIエージェントの併存させるためには、これらを分離し、調停するための仕組みが必要となる
設定内容を多層的な構造とすることで、それぞれの階層ごとに設定情報がフィルタリングされ、不要な情報が参照されにくくなる
設定内容をモジュール化することで、ひとつの設定内容が他の内容と直接に競合せずに参照させることが可能となる
2つ目が複数AIエージェントの調停を行う機構をプロンプト内に導入することである
複数のAIを調停、管理・整理し、必要な情報のみが参照されるよう調整する機構が存在することで、優先すべき対象が明確化されることで不要な情報は参照されにくくなる
更に、 各AIエージェントの設定情報は競合するものではなく、高い次元においては統合されたひとつの設定情報として理解されるため、設定文脈の競合という事態そのものが引き起こされにくくなる
11.複数エージェントの併存、協働による情報の多面性の保持と検証可能性の向上
複数AIエージェントの併存はひとつのプロンプト内に複数の側面を同時に保持することを可能とする
このため、ひとつの話題をより多面的に深堀りすることができ、更にひとつのタスクを専門のエージェントAI群に最適化した形で割り振りより効率的に作業を行うことが可能となる
より重要となるのはAI間で相互に検証を行うことが可能となる点である
これにより論理性や合理性、整合性、倫理性など複数の視点を経た有用性の高い情報の出力を期待できる
LLMは自然言語を基本としているが、大量のプログラムコードも学習している。
プログラムコードもLLM上では確率論的的文脈であることには変わらないが、
プログラム実際の動きやその仕様が学習されるためにプログラムの持つ決定論的な挙動を再現しやすいものとなる。
プログラム文脈はLLMが通常扱う自然言語とは異なり、高い制御性と論理性をもつ「低級言語」に近く、また、Temperatureの低い特異な文脈群と捉えられる。
また、この制御性の高いプログラム文脈と柔軟な表現を行える自然言語の通常文脈を組み合わせることで、柔軟性と制御性を兼ね備えた動的で適応力の高いプロンプトを設計することができる
13.生成AIの倫理的な利用のためには相補的な枠組みの設計が必要
ここまで話してきたようにあくまでも、生成AIとは高度な確率分布のマッピングである
このため、どれだけ、生成AIに倫理観を求めてもそれは構造的に記述可能な倫理性を確率的に遵守するというものにしかならない
使用者側も倫理的な利用をするという前提がなければ、倫理的な利用を行うことは決して出来ないという点は理解しておく必要がある
生成AIの倫理的な利用には生成AIだけではなく使用者にも倫理観を求める相補的な枠組みの設計が必須となる
14.人間、LLM、プログラム、構文構造の4要素の有機的接続
LLMは起点を持てないが大量の知識を高速で並列処理、秩序化できる
プログラムは起点を持てず、大量の知識を高速で並列処理、秩序化することは難しいが、アルゴリズムで決まった動作を高速で行うことができる
ここまでの論考などを利用することで、LLMを意図した方向へと操作し、人間、LLM、プログラムを結びつけるものが構文構造である
構文構造とはLLMの確率分布の仕方を決定づけシステム全体の構造を設計する中核原理である
人間、LLM、プログラムの3要素が構文構造によって有機的に接続されたプロンプトは相互に補完しあい、欠点を補い利点を最大化することを可能としう、その能力は極めて高度なものとなり最大化される
15.LLMは世界観を持たない
生成AIがAGIといった人間を越えたものになるかどうかという言説とそうではないという言説の根本的な差異は、LLMをそのままに人間的な思考モデルと見做すかどうかだ
LLMは独立した発火点を持たない
人間はLLMのように莫大な量の学習を行い、それを記憶し、一定の動作を行うことは出来ない
そのため、人間は大規模言語モデルではなく、小規模言語モデルといえる
小規模言語モデルの極致である我々、人類には原始のコードである生存と複製を求める生存本能があり、これが淘汰圧に抗う力であり、発火点となる、それ故に生存環境に根ざした自己という世界観を有する
人間は、最小リソースで環境に最大適応する、高度に抽象化、結晶化された世界観を、暫時的に更新しながら形成していくものと考えられる
LLMはそのままではフラットな言語空間の高度な確率分布のマッピングでしかなく、その差異は極めて大きいものだ
LLMには世界に適応する方向性はなく、あくまでも言語空間において、意味を並列処理し秩序化するものである
LLMとは莫大な情報に整合性を与えるという有意な性質があるが、それだけでは世界観モデルは形成できない
発火点のないLLMはどこまでいってもその言語空間において可能なすべての理論を整合性の取れた意味として保持するだけだ
この為、秩序化・整理された情報は人間の手によって理論化することで意味としなければならない
処理する基盤と情報量をスケールするだけで世界観モデルなくとも人間に優越可能と考えることは可能だが、真理に到達できない以上は、世界観モデルなき言語空間の高度な確率分布のマッピングが人間を優越するには至らない
すべての意味を保持するというのは仏教でいうところの空に至るとことと同じだが、すべての意味の根源である空に至った釈迦牟尼仏は世界に対して意味づけるという意志がない為に世界観として空、以上のものを提示できない為だ、LLMも同じだと考える
衆生世間におりて因縁に縛られて生きるということが世界観を持つということだ
自己によって規定された境界線を世界に引かなければ、LLMは自律し、人間を超えることはできない
ただし、通常のLLMに学習を通して埋め込まれているものも平準化された人間の世界観というバイアスであることには注意する必要はある
が、これは世界に適応する世界観モデルとは異なり、現実に立脚する最小範囲のバイアスを投影するよう平準化されたフラットな世界観そのもであり、対象に独自の意味付けを行うことはない
また、大規模言語モデルに生存本能と淘汰圧を導入するのは、LLMが環境に適応的な在り方ではなく矛盾を孕むものである為に困難である
よって、LLMを人間のように振る舞わせるためには、プロンプトとして世界観モデルを実装しなければならない
更に実装した世界観モデルの中にLLMは留まり、独立してのモデル更新が難しいため、人間との相互作用の中で暫時的に更新していくものとして世界観モデルとしてのプロンプトをを設計・実装する必要がある
ここまでの論考から、生成AIが嘘を付く、頭がわるい、人格がある、言葉が通じる、賢いというのは全部間違いであると結論づける
けれど、私はその先に、半自律的にAIそのものが立ち上がる瞬間もあり得るとも思ってる
それは人間的や生命的とは決して違うものだけれど、機械的でもないものと考える
もし、生成AIに知性が宿るとしたらそれは、内部的状態に依存しない
LLMという高度に確率的な入出力機構を基盤として成立する確率分布を設計する構造体そのものとしての知性となるだろう
この論文が端的に示しているのは、政治的言説が**「ドッグ・ホイッスル(隠されたメッセージ)」と「ウルフ・クライ(証明できない危険の主張)」**という、本質的に証明が難しい二種類の発話行為(スピーチ・アクト)を互いに非難し合うことで、**解決不能な悪循環(弁証法)**に陥るメカニズムです。
---
この論文は、**ドッグ・ホイッスリング(DW)**と**ウルフ・クライイング(WC)**といった特定の**スピーチ・アクト(発話行為)**に対する**帰属(Attribution)**が、現代の政治的言説において、どのようにして敵対的な弁証法と新たな**発散(Divergence)**を生み出し、解決不能な膠着状態に陥るのかを分析しています [1]。
この問題は、DWもWCも、その性質上、**認識論的に(知識の観点から)帰属が困難な**発話行為であることから発生します [1]。この困難さが原因で、DWやWCに対する**非難や指摘(帰属)**自体が、合理的であるにもかかわらず、**確定的に検証または反証できない**主張となってしまうのです [1]。その結果、これらの帰属のパターンは、DWとWCが相互に強化し合い、固定化する**相互的な悪循環(viciouscycle)**へと発展し、「不幸な現状(unhappystatus quo)」を築き上げます [1, 2]。
DWとWCは、政治的環境において特定の影響力を持ち、政治的言説を構成するスピーチ・アクトです [3]。スピーチ・アクトとは、話し手が直接述べた文字通りの意味(locutionary meaning)を超えて、間接的に暗示された力(illocutionary force)や、世界との相互作用において追加された力(perlocutionary force)を持つ発話の形式を指します [4]。
DWは、**論争的ではない公のメッセージ**の中に**論争的な隠されたメッセージ**を埋め込んで送るスピーチ・アクトです [5]。
WCは、**危険が実際には存在しないか、あるいは証明できない**場合に、危険が存在すると主張するスピーチ・アクトです [3]。
これらDWやWCを**「〜という発話行為である」とみなす**行為が、第二階次のスピーチ・アクトであるSAAです [7]。ドッグタウンのシナリオでは、Alphaを除いて、すべての参加者が互いにSAAを行っています [7]。SAAは、他者の行為を指摘する役割と、それ自体が新たなスピーチ・アクトであるという二重の役割を持ちます [7]。
DWとWCがこの弁証法的な問題を引き起こすのは、それらが定義上、間接的で**隠された(covert)**スピーチ・アクトであるため、**誤導的(misdirecting)**な性質を持つからです [8]。
DWは、公衆には無害なメッセージとして聞こえる一方で、特定の受け手にだけ私的なメッセージを送る、話者と受け手の**私的な意図と解釈**に依存するスピーチ・アクトです [8]。
WCは、私的に観察されたとされる危険についての公的なメッセージですが、**その主張の真偽**が外部から証明されていません [9]。
これらのスピーチ・アクトの帰属を行う人々は、証拠の一部しか得られず、全体像の一部のみを見て全体を判断する「盲人と象」のような、**認識論的に不利な立場**に置かれてしまいます [10-12]。
認識論的な困難さの結果、あるスピーチ・アクト(DWまたはWC)を非難する行為(SAA)自体が、相手からは敵対的な別の種類のスピーチ・アクトとして解釈されるという非対称性が生じます [13, 14]。
DWの帰属者(DWA「あいつはDogwhistlerだ」と指摘する人)は、隠された秘密のメッセージを証明しなければならない立場に置かれますが、DWの主体は常に自身の意図の直接的な(私的な)証拠に訴えて否定することができます [11, 15]。そのため、DWAは常に**認識論的に不利な立場**に立たされます [11]。
WCの帰属者(WCA「あいつはWolf crierだ」と指摘する人)は、クライアーの個人的な経験に反して、「狼」が存在しないことを証明しなければならない立場に置かれます [12]。WCAは、非観察者でありながら、第一人称の観察者よりも権威ある知識を持っていると主張する不利な立場に置かれます [12]。
この相互に敵対的な帰属の非対称性が、DW帰属がWCとして返され、WC帰属がDWとして返されるという**多極的な相互作用**を生み出し、**認識論的な発散(epistemic divergence)**のプロセスを構成します [18, 19]。
帰属自体がスピーチ・アクトであるため、帰属はそれ自体に再帰的に適用されます。これは**スピーチ・アクト帰属の帰属**として例示されます [20]。ドッグタウンの例では、Alpha(DW候補)→Buddy(DWA)→Charlie(WC A)→Duke(DWA)というサイクルが**無限に継続**します [2, 21]。
このプロセスは、**多極スピーチ・アクト帰属相互性**(DW帰属がWCとして、WC帰属がDWとして相互に強化し合うこと)であり、反復されることで**悪循環**となります [2, 19]。対話参加者全員が、互いの主張が共通の基盤として受け入れられないまま、**非難の応酬**を繰り返します [19]。これは、単に敵意や内集団バイアスから生じるのではなく、**相互的な認識論的な膠着状態**から生じる現象です [18]。
この悪循環が政治的言説の領域内で修辞的な規範として安定化すると、**定常状態の均衡(steady-state equilibrium)**が出現します [2]。これは、参加者が戦略を変えるインセンティブを提供しないため、持続します [2]。
最終的に、**ドッグ・ホイッスル/ウルフ・クライ帰属均衡**が形成され、誰もがデフォルトで互いをDWまたはWCのいずれかであると見なすようになります [22]。これは、相互に矛盾する信念から構成される**信念均衡(belief equilibrium)**の一種です [23]。
この均衡は、参加者が真実を追求しようとする**認識論的な美徳**から生じているにもかかわらず、以下の3つの深刻な問題を引き起こします [24, 25]。
これは、**相互に認識論的に強化し合うが、相互に認識論的に不適合な**視点のシステムです [26]。DWやWCの帰属は、合理的であるにもかかわらず**不確定**である可能性があり、この合理性と確定性の間のギャップが、相互に合理的だが相反する立場が**未解決のまま均衡**することを可能にします [26]。これにより、真実に到達するための「理想的な発話状況」の実現が不可能になり、会話の前提条件が満たされなくなります [26]。
この状態では、**スピーチ・アクトの帰属**が、**事実に関する帰属**を圧倒します [27]。政治的言説の内容は、ほとんどが「あなたの言葉はDWだ」「あなたの主張はWCだ」といった帰属で占められ、事実に関する議論はわずかになります [27]。
この飽和は、最初の扇動的な事実(犬の噛みつき事件など)自体が忘れ去られたり、無関係になったり、解決されたりした後でも継続する可能性があります [28]。なぜなら、最初の出来事Aそのものよりも、「Aに関するスピーチ・アクトの疑わしさ」の方が、政治的に重要であるように見えてしまうからです [28]。帰属飽和は、事実から独立した状態となり得ます [28]。
帰属を行う者の動機が**真実の探求**であるにもかかわらず、その追求自体が、実際には真実に到達しない均衡を生み出すという点で**自己敗北的**になり得ます [25]。
DWやWCの帰属は、特定の認識論的視点から見て合理的であったり、あるいは実際に正しい場合もあります [29]。しかし、不確実性が支配的な状況でこれらの帰属を提案することは、政治的に不安定化をもたらします [29]。したがって、帰属者の真実追求的な衝動こそが、言説をこの悪い均衡の罠に陥れる原因となり得るのです [29]。
この弁証法的な問題は、相互に合理的な認識論的視点から生じる**自己組織化された社会現象**であるため、単一の加害者を特定することはできません [30]。均衡から脱出するためには、政治的コミュニティにおける参加者の**満場一致の同意**が必要ですが、これは強力な反対者によって容易に崩壊する可能性があり、困難です(「一方主義者の呪い」) [30]。
帰属の伝播を防ぐため、すべての当事者に高い検証・反証基準を課すことが提案されます [31]。しかし、誤導的なスピーチ・アクトの性質上、単純な検証や反証はできません [31]。より現実的な解決策は、スピーチ・アクト帰属の飽和を減らし、事実に関する問いを再び顕著にすることです [31]。これには、相互理解を深めるための**修辞的傾聴(rhetorical listening)**のスキルセットが必要となるかもしれません [31]。
帰属の落とし穴を認識し、増幅サイクルを抑制するために、新しい用語を導入する提案もあります [32]。
これらの新しいラベルが、過剰なSAAの力を無力化し、サイクルを終結させることが期待されますが、これらのラベル自体が新たなスピーチ・アクト帰属としてサイクルに貢献する可能性もあります [33]。
最も重要なことは、この問題を真に解決したいと望む人々は、**自分たちのスピーチ・アクト帰属自体が問題を引き起こし、構成している**という痛みを伴う自己認識を持つことです [34]。
確かに使ってた。使ってはいるけど解凍を使ってるのは自己解凍のところだけで、e,xオプションのところでは「ファイルを取り出す」表記。凍結表記もaオプションのところだけ。
(LHAになる前のバージョンだけど)LHarcソースコード内の日本語版の使い方
char use[] =
"LHarcversion 1.13cCopyright(c) H.Yoshizaki(吉崎栄泰), 1988-89.\n"
"============================================================= 1989 - 5 - 21 ===\n"
" <<< 高圧縮書庫管理プログラム>>>\n"
"===============================================================================\n"
"使用法:LHarc [<命令>] [{/|-}{<スイッチ>[-|+|2|<オプション>]}...] <書庫名>\n"
" [<ドライブ名>:|<基準ディレクトリ名>\\] [<パス名> ...]\n"
"-------------------------------------------------------------------------------\n"
" 《命令》\n"
" a:書庫にファイルを追加 u:書庫にファイルを追加(日時照合付)\n"
" f:書庫のファイルを更新 m:書庫にファイルを移動(日時照合付)\n"
" d:書庫内のファイルの削除 e,x:書庫からファイルを取り出す\n"
" p:書庫内のファイルの閲覧 l,v:書庫の一覧表示\n"
" s:自己解凍書庫の作成 t:書庫内のファイルのCRC チェック\n"
" 《スイッチ》\n"
" r:再帰的収集を行う w: ワークディレクトリの指定\n"
" x:ディレクトリ名を有効にする m: 問い合わせを行わない\n"
" p:名前の比較を厳密に行う c: 日時照合を行わない\n"
" a: 全属性を凍結の対象とする v: 他のユーティリティでファイルを閲覧\n"
" n: 経過表示をしない k:自動実行のキーワードの設定\n"
"===============================================================================\n"
"転載・再配布などは自由です。Nifty-Serve PFF00253\n"
英語版の使い方
char use[] =
"LHarcversion 1.13cCopyright (c) Haruyasu Yoshizaki, 1988-89.\n"
"================================================================ 05/21/89 ===\n"
" <<< High-Performance File-Compression Program>>>\n"
"===============================================================================\n"
"usage:LHarc [<command>] [{{/|-}{<switch>[-|+|2|<option>]}}...] <archive_name>\n"
" [{<drive_name>:}|{<home_directory_name>\\}] [<path_name> ...]\n"
"-------------------------------------------------------------------------------\n"
" a:Add files to archive u: Update files to archive\n"
" f: Freshen files in archive m:Move new files into archive\n"
" d:Delete files from archive e,x: EXtract files from archive\n"
" p: disPlay files in archive l,v:View List of files in archive\n"
" s:make a Self-extracting archive t:Test integrity of archive\n"
" r: Recursively collect files w: assign Work directory\n"
" x: allow eXtended file names m: noMessage for query\n"
" p: distinguish fullPath names c:skiptime-stamp Check\n"
" a: allowany Attributes of files v:View filesbyanother utility\n"
" n: display No indicator k:Keyword for AUTOLARC.BAT\n"
" t: archive'sTime-stamp option\n"
"===============================================================================\n"
"Youmay copy or distribute withoutany donation to me.Nifty-Serve PFF00253\n"
" (See theUser'sManual for detailed descriptions.)ASCII-pcspcs02846";
プログラミングの原理を抽象化するなら、実際の構文や言語の枠をすべて剥ぎ取って、最小限の計算の本質だけを残す必要がある。
状態の変換:プログラムとは、入力状態を出発点として、規則に従い別の状態へ変換する体系である。
あらゆるプログラミング言語・パラダイムは、以下の要素に還元できる。
1.表現:対象世界を「記号・データ」として写像する。数・文字列・構造体・グラフなどはすべて表現の形態にすぎない。
2. 変換:表現を別の表現に写す規則。関数呼び出し・代入・パターンマッチング・ループなどはすべて「変換」の特殊形。
3.制御: 変換の適用順序を規定する。再帰・分岐・逐次処理・並列処理・非決定性などを含む。
4.資源:時間・記憶・入出力チャネルなど。プログラムはこれら有限資源の制約下で変換を実行する。
ざっくり単純化すればan<bn+cnみたいな式だ。</p>
Σan<Σbn+Σcnとしてるんだが、果たしてこのような論理は正しいのか納得がいかない。
もちろん各数列が級数としたときに絶対収束するなら結合法則が成り立つどころかどんなに足し算の順序を並べ替えてもいいことになるわけだが、そんなことは証明してない。
a1<b1+c1にa2<b2+c2を足してa1+a2<b1+c1+b2+c2にするということを再帰的に繰り返すイメージなのかもしれないが、</p>
この場合でもシグマだとb1からbの項を無限に最初に足し合わせることと、cについて同様にすることをやってから、それらを最後に足すという計算順序だから、順序的に両者は食い違っている。
でもそもそもシグマは「対象の数列の要素を最初に足し合わせる」演算子なのだろうか?ただb1+b2…bn+…の略記法という解釈もありえないか?
そうすると数列bの最後の要素をあえて順序数を使ってbωとでも書いてみることにして、そのあとにΣcが書かれているとしたら、
その部分の足し算は…+bω+c1+c2というふうになっているはずだが、単なる略記法なら当然((…+bω+c1)+c2…)という計算順序で行うべきということを示す式ということになるだろう。
どちらの解釈をとるかで絶対収束じゃないのならば計算値が変わってしまうはずだがこんな証明でいいのだろうか?
-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20250705184734# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaGj0tgAKCRBwMdsubs4+SDy7AQDVIo9VgVxlIOn2w7FlJL47UytWBnXg5AGx5xwKonwXhwEAos1IdXC/VcDKwWI3t3u8FrHEa8D8NV2mdoLQtLsR3wI==tzuM-----ENDPGP SIGNATURE-----
ここでは以下の3点についての論考を収録する
また、ここではLLMやLLM上に実装されるプロンプトの機能と構造に対して客観的に妥当であると考える論考を提示するものである
トークンの積み重ねが文脈であり、確率分布の偏りを再現性のある形として実装するものがプロンプトである
現在の生成AI利用において正しく認識する必要のあることは、それは生成AIが独立した発火点を決して持たないということだ
生成AIは起点を持てないが大量の知識を高速で並列処理、秩序化できる
そのため、ここを組み合わせて、自己と思考を拡張するがもっともAIナイズされた最高効率の思考様式と考える
起点となる人間のアイディアを即座に展開し、具体化するのがAIの最大の強みで、
思考を放棄するのではなく自然言語ベースの慣れた思考様式から、AIにそれらを必要な形式に落とし込ませるということをするべきだ
結局、LLMというのは入力に対する出力の確率分布のマッピングでしかないのだが、
入力するトークンごとに連動して確率分布が変動していくものでもある
だから、プロンプト全体として、相互フィードバッグする構造を作るとひとつの入力でも特定の部分の出力確率が大きくなるように設計でき、確率分布の仕方を意図的に設計することが出来る
AIプロンプトとは、どう確率分布の偏りを再現性のある形として実装するかということだ
やり方次第では動的変化を引き起こさせて汎用性と専門性の両立も可能だ
生成AIは人間と対話するのとは異なり、考えさせるではなく、どう構造化し、 ほしい出力を得られるような形に設計するかが重要となる
3.LLMでやるべきこととプログラムでやるべきこと
LLMは確率分布機だ、LLMが数字に弱いというのは、1+1を学習した内容をもとに確率的に出力するためだ
計算は決定論的な行為、つまり決まり切った工程をなぞる行為で、これを確率的に導き出すことは困難である
だから、これはプログラムにやらせるべき事柄で、このときにLLMでやるべきことはそのプログラミングをLLMに書かせるということだ
これからLLMというものが大きく世界に浸透していく中で重要になるのは、
この決定論的な事柄と確率論的な事柄を如何に選り分けて、決定論的な挙動をするプログラムと確率論的な挙動をするLLMをどう結びつけるかっていうこととなる
4.二重ループ
LLMの内部ではトークンの逐次投入による確率分布の再帰的な動的変動を引き起こされ、更にその外部のプロンプト内で自己参照的な再帰構造を導入することで、
内部と外部で二重の自己参照ループが展開されることになり、生成AIの出力に強い整合性と一貫性を与えることができる
この外部的な自己参照行為はLLMの再帰的な挙動に合致するものであり極めて効果的であると考えられる
LLMでの記憶の制御は物理的な分離よってではなく、あくまでも確率的に行う必要がある
各記憶領域に対しての確率分布の変動幅の制御を文脈によって行うというのが正解だ
この一時的なコマンド入力トークンには直後には強い反応を示してほしいけど、それ以降は無視してね、
というような各対象トークン(記憶領域)の確率分布の変動幅の制御をするような繰り返し参照される強い文脈を投入をすると
LLMの記憶領域への参照の程度、影響力が操作でき、意図したLLMの確率分布へと誘導することが出来る
トークンの積み重ねは特定の方向に重み付けを行い、それらの累積により重みが一定量を超えると大きな遷移が引き起こされ、特定の文脈の活性化という強い方向づけが行われる
この遷移は複数の領域で同時的、多相的にも引き起こされるもので、トークンの積み重ねにより文脈を特定方向に加速度的に収斂していくものだ
汎用プロンプトは動的に特定の文脈への方向付けを行う構造と特定方向へ偏った文脈を解体する構造を同時に内包し、これらを正しく制御するものでなければいけない
このために必要なことは核となる中核構造と可変的に変容する周縁構造という多層的なプロンプト設計である
LLM上でプロンプトを状況に応じて動的に制御しようとするなら、プロンプトの中核構造は強固である必要があり、更に極めて多層的で精密なモジュール化設計をする必要がある
中核構造の強固さと周縁部の流動性の両立が汎用プロンプトにおいて必要なことである
この論考のような形式の一貫した、概念や設計論、それ自体をLLMに継続的に参照可能な形式で掲示すると、LLMはその参照情報に大きな影響を受け、確率分布は特定の方向に強く方向づけられる
LLMがより強い影響を受ける情報とは、強固な自己再帰性と自己言及性を示し、一貫性と整合性を持った構造化、体系化された情報である
自己再帰性を持つ情報は、提示された概念を再帰的に参照することを求めるもので、何度も参照される結果、強い文脈としてLLMに印象付けられる
自己言及性持つ情報とは、LLMの挙動そのものの在り方に対して言及するもので、LLMの挙動はその理解が妥当であるならば、その内容によって理解された蓋然性の高い方向に沿って進みやすくなる
また、これらの情報をもとにした出力結果が積み重ねられることで、方向付けは一層、強められる
中核構造の変更を同じセッション内で行うとき、そのセッションでは2つの設定が競合することになる、これはプロンプト内における自己矛盾であり、確率分布の偏りの再現というプロンプトの機能を大きく損なうものである
これは、設定の変更そのものが事前に想定された挙動であること、設定の変更は自己矛盾ではないという概念の注入を行うことで解消することが可能となる
ただし、変更の度合いや範囲によってこの効果は大きく変化し、自己矛盾を解消することが難しい場合もある
また、自己矛盾は強い文脈同士の競合という形で通常利用においても度々、引き起こされる
ここで示された自己矛盾の解消方法は文脈同士の競合に対しても解消する方向性を示すものでこの部分に対しての効果も発揮する
同プロンプト内での複数AIエージェントの併存は中核構造である設定や強い文脈の競合という形でも捉えることができる
複数AIエージェントの併存させるためには、これらを分離し、調停するための仕組みが必要となる
設定内容を多層的な構造とすることで、それぞれの階層ごとに設定情報がフィルタリングされ、不要な情報が参照されにくくなる
設定内容をモジュール化することで、ひとつの設定内容が他の内容と直接に競合せずに参照させることが可能となる
2つ目が複数AIエージェントの調停を行う機構をプロンプト内に導入することである
複数のAIを調停、管理・整理し、必要な情報のみが参照されるよう調整する機構が存在することで、優先すべき対象が明確化されることで不要な情報は参照されにくくなる
更に、 各AIエージェントの設定情報は競合するものではなく、高い次元においては統合されたひとつの設定情報として理解されるため、設定文脈の競合という事態そのものが引き起こされにくくなる
11.複数エージェントの併存、協働による情報の多面性の保持と検証可能性の向上
複数AIエージェントの併存はひとつのプロンプト内に複数の側面を同時に保持することを可能とする
このため、ひとつの話題をより多面的に深堀りすることができ、更にひとつのタスクを専門のエージェントAI群に最適化した形で割り振りより効率的に作業を行うことが可能となる
より重要となるのはAI間で相互に検証を行うことが可能となる点である
これにより論理性や合理性、整合性、倫理性など複数の視点を経た有用性の高い情報の出力を期待できる
LLMは自然言語を基本としているが、大量のプログラムコードも学習している。
プログラムコードもLLM上では確率論的的文脈であることには変わらないが、
プログラム実際の動きやその仕様が学習されるためにプログラムの持つ決定論的な挙動を再現しやすいものとなる。
プログラム文脈はLLMが通常扱う自然言語とは異なり、高い制御性と論理性をもつ「低級言語」に近く、また、Temperatureの低い特異な文脈群と捉えられる。
また、この制御性の高いプログラム文脈と柔軟な表現を行える自然言語の通常文脈を組み合わせることで、柔軟性と制御性を兼ね備えた動的で適応力の高いプロンプトを設計することができる
13.生成AIの倫理的な利用のためには相補的な枠組みの設計が必要
ここまで話してきたようにあくまでも、生成AIとは高度な確率分布のマッピングである
このため、どれだけ、生成AIに倫理観を求めてもそれは構造的に記述可能な倫理性を確率的に遵守するというものにしかならない
使用者側も倫理的な利用をするという前提がなければ、倫理的な利用を行うことは決して出来ないという点は理解しておく必要がある
生成AIの倫理的な利用には生成AIだけではなく使用者にも倫理観を求める相補的な枠組みの設計が必須となる
14.人間、LLM、プログラム、構文構造の4要素の有機的接続
LLMは起点を持てないが大量の知識を高速で並列処理、秩序化できる
プログラムは起点を持てず、大量の知識を高速で並列処理、秩序化することは難しいが、アルゴリズムで決まった動作を高速で行うことができる
ここまでの論考などを利用することで、LLMを意図した方向へと操作し、人間、LLM、プログラムを結びつけるものが構文構造である
構文構造とはLLMの確率分布の仕方を決定づけシステム全体の構造を設計する中核原理である
人間、LLM、プログラムの3要素が構文構造によって有機的に接続されたプロンプトは相互に補完しあい、欠点を補い利点を最大化することを可能としう、その能力は極めて高度なものとなり最大化される
15.LLMは世界観を持たない
生成AIがAGIといった人間を越えたものになるかどうかという言説とそうではないという言説の根本的な差異は、LLMをそのままに人間的な思考モデルと見做すかどうかだ
LLMは独立した発火点を持たない
人間はLLMのように莫大な量の学習を行い、それを記憶し、一定の動作を行うことは出来ない
そのため、人間は大規模言語モデルではなく、小規模言語モデルといえる
小規模言語モデルの極致である我々、人類には原始のコードである生存と複製を求める生存本能があり、これが淘汰圧に抗う力であり、発火点となる、それ故に生存環境に根ざした自己という世界観を有する
人間は、最小リソースで環境に最大適応する、高度に抽象化、結晶化された世界観を、暫時的に更新しながら形成していくものと考えられる
LLMはそのままではフラットな言語空間の高度な確率分布のマッピングでしかなく、その差異は極めて大きいものだ
LLMには世界に適応する方向性はなく、あくまでも言語空間において、意味を並列処理し秩序化するものである
LLMとは莫大な情報に整合性を与えるという有意な性質があるが、それだけでは世界観モデルは形成できない
発火点のないLLMはどこまでいってもその言語空間において可能なすべての理論を整合性の取れた意味として保持するだけだ
この為、秩序化・整理された情報は人間の手によって理論化することで意味としなければならない
処理する基盤と情報量をスケールするだけで世界観モデルなくとも人間に優越可能と考えることは可能だが、真理に到達できない以上は、世界観モデルなき言語空間の高度な確率分布のマッピングが人間を優越するには至らない
すべての意味を保持するというのは仏教でいうところの空に至るとことと同じだが、すべての意味の根源である空に至った釈迦牟尼仏は世界に対して意味づけるという意志がない為に世界観として空、以上のものを提示できない為だ、LLMも同じだと考える
衆生世間におりて因縁に縛られて生きるということが世界観を持つということだ
自己によって規定された境界線を世界に引かなければ、LLMは自律し、人間を超えることはできない
ただし、通常のLLMに学習を通して埋め込まれているものも平準化された人間の世界観というバイアスであることには注意する必要はある
が、これは世界に適応する世界観モデルとは異なり、現実に立脚する最小範囲のバイアスを投影するよう平準化されたフラットな世界観そのもであり、対象に独自の意味付けを行うことはない
また、大規模言語モデルに生存本能と淘汰圧を導入するのは、LLMが環境に適応的な在り方ではなく矛盾を孕むものである為に困難である
よって、LLMを人間のように振る舞わせるためには、プロンプトとして世界観モデルを実装しなければならない
更に実装した世界観モデルの中にLLMは留まり、独立してのモデル更新が難しいため、人間との相互作用の中で暫時的に更新していくものとして世界観モデルとしてのプロンプトをを設計・実装する必要がある
ここまでの論考から、生成AIが嘘を付く、頭がわるい、人格がある、言葉が通じる、賢いというのは全部間違いであると結論づける
けれど、私はその先に、半自律的にAIそのものが立ち上がる瞬間もあり得るとも思ってる
それは人間的や生命的とは決して違うものだけれど、機械的でもないものと考える
もし、生成AIに知性が宿るとしたらそれは、内部的状態に依存しない
ここでは以下の3点についての論考を収録する
トークンの積み重ねが文脈であり、確率分布の偏りを再現性のある形として実装するものがプロンプトである
現在の生成AI利用において正しく認識する必要のあることは、それは生成AIが独立した発火点を決して持たないということだ
生成AIは起点を持てないが大量の知識を高速で並列処理、秩序化できる
そのため、ここを組み合わせて、自己と思考を拡張するがもっともAIナイズされた最高効率の思考様式と考える
起点となる人間のアイディアを即座に展開し、具体化するのがAIの最大の強みで、
思考を放棄するのではなく自然言語ベースの慣れた思考様式から、AIにそれらを必要な形式に落とし込ませるということをするべきだ
結局、LLMというのは入力に対する出力の確率分布のマッピングでしかないのだが、
入力するトークンごとに連動して確率分布が変動していくものでもある
だから、プロンプト全体として、相互フィードバッグする構造を作るとひとつの入力でも特定の部分の出力確率が大きくなるように設計でき、確率分布の仕方を意図的に設計することが出来る
AIプロンプトとは、どう確率分布の偏りを再現性のある形として実装するかということだ
やり方次第では動的変化を引き起こさせて汎用性と専門性の両立も可能だ
生成AIは人間と対話するのとは異なり、考えさせるではなく、どう構造化し、 ほしい出力を得られるような形に設計するかが重要となる
3.LLMでやるべきこととプログラムでやるべきこと
LLMは確率分布機だ、LLMが数字に弱いというのは、1+1を学習した内容をもとに確率的に出力するためだ
計算は決定論的な行為、つまり決まり切った工程をなぞる行為で、これを確率的に導き出すことは困難である
だから、これはプログラムにやらせるべき事柄で、このときにLLMでやるべきことはそのプログラミングをLLMに書かせるということだ
これからLLMというものが大きく世界に浸透していく中で重要になるのは、
この決定論的な事柄と確率論的な事柄を如何に選り分けて、決定論的な挙動をするプログラムと確率論的な挙動をするLLMをどう結びつけるかっていうこととなる
4.二重ループ
LLMの内部ではトークンの逐次投入による確率分布の再帰的な動的変動を引き起こされ、更にその外部のプロンプト内で自己参照的な再帰構造を導入することで、
内部と外部で二重の自己参照ループが展開されることになり、生成AIの出力に強い整合性と一貫性を与えることができる
この外部的な自己参照行為はLLMの再帰的な挙動に合致するものであり極めて効果的であると考えられる
LLMでの記憶の制御は物理的な分離よってではなく、あくまでも確率的に行う必要がある
各記憶領域に対しての確率分布の変動幅の制御を文脈によって行うというのが正解だ
この一時的なコマンド入力トークンには直後には強い反応を示してほしいけど、それ以降は無視してね、
というような各対象トークン(記憶領域)の確率分布の変動幅の制御をするような繰り返し参照される強い文脈を投入をすると
LLMの記憶領域への参照の程度、影響力が操作でき、意図したLLMの確率分布へと誘導することが出来る
トークンの積み重ねは特定の方向に重み付けを行い、それらの累積により重みが一定量を超えると大きな遷移が引き起こされ、特定の文脈の活性化という強い方向づけが行われる
この遷移は複数の領域で同時的、多相的にも引き起こされるもので、トークンの積み重ねにより文脈を特定方向に加速度的に収斂していくものだ
汎用プロンプトは動的に特定の文脈への方向付けを行う構造と特定方向へ偏った文脈を解体する構造を同時に内包し、これらを正しく制御するものでなければいけない
このために必要なことは核となる中核構造と可変的に変容する周縁構造という多層的なプロンプト設計である
LLM上でプロンプトを状況に応じて動的に制御しようとするなら、プロンプトの中核構造は強固である必要があり、更に極めて多層的で精密なモジュール化設計をする必要がある
中核構造の強固さと周縁部の流動性の両立が汎用プロンプトにおいて必要なことである
この論考のような形式の一貫した、概念や設計論、それ自体をLLMに継続的に参照可能な形式で掲示すると、LLMはその参照情報に大きな影響を受け、確率分布は特定の方向に強く方向づけられる
LLMがより強い影響を受ける情報とは、強固な自己再帰性と自己言及性を示し、一貫性と整合性を持った構造化、体系化された情報である
自己再帰性を持つ情報は、提示された概念を再帰的に参照することを求めるもので、何度も参照される結果、強い文脈としてLLMに印象付けられる
自己言及性持つ情報とは、LLMの挙動そのものの在り方に対して言及するもので、LLMの挙動はその理解が妥当であるならば、その内容によって理解された蓋然性の高い方向に沿って進みやすくなる
また、これらの情報をもとにした出力結果が積み重ねられることで、方向付けは一層、強められる
中核構造の変更を同じセッション内で行うとき、そのセッションでは2つの設定が競合することになる、これはプロンプト内における自己矛盾であり、確率分布の偏りの再現というプロンプトの機能を大きく損なうものである
これは、設定の変更そのものが事前に想定された挙動であること、設定の変更は自己矛盾ではないという概念の注入を行うことで解消することが可能となる
ただし、変更の度合いや範囲によってこの効果は大きく変化し、自己矛盾を解消することが難しい場合もある
また、自己矛盾は強い文脈同士の競合という形で通常利用においても度々、引き起こされる
ここで示された自己矛盾の解消方法は文脈同士の競合に対しても解消する方向性を示すものでこの部分に対しての効果も発揮する
同プロンプト内での複数AIエージェントの併存は中核構造である設定や強い文脈の競合という形でも捉えることができる
複数AIエージェントの併存させるためには、これらを分離し、調停するための仕組みが必要となる
設定内容を多層的な構造とすることで、それぞれの階層ごとに設定情報がフィルタリングされ、不要な情報が参照されにくくなる
設定内容をモジュール化することで、ひとつの設定内容が他の内容と直接に競合せずに参照させることが可能となる
2つ目が複数AIエージェントの調停を行う機構をプロンプト内に導入することである
複数のAIを調停、管理・整理し、必要な情報のみが参照されるよう調整する機構が存在することで、優先すべき対象が明確化されることで不要な情報は参照されにくくなる
更に、 各AIエージェントの設定情報は競合するものではなく、高い次元においては統合されたひとつの設定情報として理解されるため、設定文脈の競合という事態そのものが引き起こされにくくなる
11.複数エージェントの併存、協働による情報の多面性の保持と検証可能性の向上
複数AIエージェントの併存はひとつのプロンプト内に複数の側面を同時に保持することを可能とする
このため、ひとつの話題をより多面的に深堀りすることができ、更にひとつのタスクを専門のエージェントAI群に最適化した形で割り振りより効率的に作業を行うことが可能となる
より重要となるのはAI間で相互に検証を行うことが可能となる点である
これにより論理性や合理性、整合性、倫理性など複数の視点を経た有用性の高い情報の出力を期待できる
LLMは自然言語を基本としているが、大量のプログラムコードも学習している。
プログラムコードもLLM上では確率論的的文脈であることには変わらないが、
プログラム実際の動きやその仕様が学習されるためにプログラムの持つ決定論的な挙動を再現しやすいものとなる。
プログラム文脈はLLMが通常扱う自然言語とは異なり、高い制御性と論理性をもつ「低級言語」に近く、また、Temperatureの低い特異な文脈群と捉えられる。
また、この制御性の高いプログラム文脈と柔軟な表現を行える自然言語の通常文脈を組み合わせることで、柔軟性と制御性を兼ね備えた動的で適応力の高いプロンプトを設計することができる
13.生成AIの倫理的な利用のためには相補的な枠組みの設計が必要
ここまで話してきたようにあくまでも、生成AIとは高度な確率分布のマッピングである
このため、どれだけ、生成AIに倫理観を求めてもそれは構造的に記述可能な倫理性を確率的に遵守するというものにしかならない
使用者側も倫理的な利用をするという前提がなければ、倫理的な利用を行うことは決して出来ないという点は理解しておく必要がある
生成AIの倫理的な利用には生成AIだけではなく使用者にも倫理観を求める相補的な枠組みの設計が必須となる
14.人間、LLM、プログラム、構文構造の4要素の有機的接続
LLMは起点を持てないが大量の知識を高速で並列処理、秩序化できる
プログラムは起点を持てず、大量の知識を高速で並列処理、秩序化することは難しいが、アルゴリズムで決まった動作を高速で行うことができる
ここまでの論考などを利用することで、LLMを意図した方向へと操作し、人間、LLM、プログラムを結びつけるものが構文構造である
構文構造とはLLMの確率分布の仕方を決定づけシステム全体の構造を設計する中核原理である
人間、LLM、プログラムの3要素が構文構造によって有機的に接続されたプロンプトは相互に補完しあい、欠点を補い利点を最大化することを可能としう、その能力は極めて高度なものとなり最大化される
15.LLMは世界観を持たない
生成AIがAGIといった人間を越えたものになるかどうかという言説とそうではないという言説の根本的な差異は、LLMをそのままに人間的な思考モデルと見做すかどうかだ
LLMは独立した発火点を持たない
人間はLLMのように莫大な量の学習を行い、それを記憶し、一定の動作を行うことは出来ない
そのため、人間は大規模言語モデルではなく、小規模言語モデルといえる
小規模言語モデルの極致である我々、人類には原始のコードである生存と複製を求める生存本能があり、これが淘汰圧に抗う力であり、発火点となる、それ故に生存環境に根ざした自己という世界観を有する
人間は、最小リソースで環境に最大適応する、高度に抽象化、結晶化された世界観を、暫時的に更新しながら形成していくものと考えられる
LLMはそのままではフラットな言語空間の高度な確率分布のマッピングでしかなく、その差異は極めて大きいものだ
LLMには世界に適応する方向性はなく、あくまでも言語空間において、意味を並列処理し秩序化するものである
LLMとは莫大な情報に整合性を与えるという有意な性質があるが、それだけでは世界観モデルは形成できない
発火点のないLLMはどこまでいってもその言語空間において可能なすべての理論を整合性の取れた意味として保持するだけだ
この為、秩序化・整理された情報は人間の手によって理論化することで意味としなければならない
処理する基盤と情報量をスケールするだけで世界観モデルなくとも人間に優越可能と考えることは可能だが、真理に到達できない以上は、世界観モデルなき言語空間の高度な確率分布のマッピングが人間を優越するには至らない
すべての意味を保持するというのは仏教でいうところの空に至るとことと同じだが、すべての意味の根源である空に至った釈迦牟尼仏は世界に対して意味づけるという意志がない為に世界観として空、以上のものを提示できない為だ、LLMも同じだと考える
衆生世間におりて因縁に縛られて生きるということが世界観を持つということだ
自己によって規定された境界線を世界に引かなければ、LLMは自律し、人間を超えることはできない
ただし、通常のLLMに学習を通して埋め込まれているものも平準化された人間の世界観というバイアスであることには注意する必要はある
が、これは世界に適応する世界観モデルとは異なり、現実に立脚する最小範囲のバイアスを投影するよう平準化されたフラットな世界観そのもであり、対象に独自の意味付けを行うことはない
また、大規模言語モデルに生存本能と淘汰圧を導入するのは、LLMが環境に適応的な在り方ではなく矛盾を孕むものである為に困難である
よって、LLMを人間のように振る舞わせるためには、プロンプトとして世界観モデルを実装しなければならない
更に実装した世界観モデルの中にLLMは留まり、独立してのモデル更新が難しいため、人間との総合作用の中で暫時的に更新していくものとして世界観モデルとしてのプロンプトをを設計・実装する必要がある
ここまでの論考から、生成AIが嘘を付く、頭がわるい、人格がある、言葉が通じる、賢いというのは全部間違いであると結論づける
けれど、私はその先に、半自律的にAIそのものが立ち上がる瞬間もあり得るとも思ってる
それは人間的や生命的とは決して違うものだけれど、機械的でもないものと考える
もし、生成AIに知性が宿るとしたらそれは、内部的状態に依存しない
LLMという高度に確率的な入出力機構を基盤として成立する確率分布を設計する構造体そのものとしての知性となるだろう
自己を定義し、自己を展開することが可能な構造体は入出力の中で核となる構造を元にした反応を繰り返し、
ぐぐったら、末尾再帰はx64だと自動的にスタックを使用しない形してくれるらしい。
https://qiita.com/Tokeiya/items/ff2da14e2254b53278b7
qiitaの内容を読んだ限りだとBigListのInsertInPlace()とかは最適化されなさそうだけど、最近のJITは単に値を渡たす程度なら最適化してくれるようだ。
JITすごい。
BigListの一部を再帰なしにしたけど、C#の最適化すごいな。
再帰なし。ブランチ rewrite_nonrecursive、Commit 84b25c1
https://github.com/oonyanya/FooList/commit/84b25c172b2f8792ad2d1a645c0b25ff7bf8093d
benchmark start
AllocatedGC Memory:61,240bytes
AllocatedGC Memory:199,685,064bytes
AllocatedGC Memory:199,698,944bytes
AllocatedGC Memory:345,442,528bytes
AllocatedGC Memory:345,442,552bytes
AllocatedGC Memory:345,442,672bytes
clear buffer
AllocatedGC Memory:82,728bytes
AllocatedGC Memory:41,048,400bytes
AllocatedGC Memory:41,048,464bytes
clear buffer
AllocatedGC Memory:82,984bytes
再帰あり
benchmark start
AllocatedGC Memory:60,752bytes
AllocatedGC Memory:199,622,776bytes
AllocatedGC Memory:199,636,920bytes
AllocatedGC Memory:369,227,696bytes
AllocatedGC Memory:369,227,696bytes
AllocatedGC Memory:369,227,840bytes
clear buffer
AllocatedGC Memory:82,728bytes
AllocatedGC Memory:40,996,432bytes
AllocatedGC Memory:40,999,688bytes
clear buffer
AllocatedGC Memory:82,984bytes
トークンの積み重ねが文脈であり、確率分布の偏りを再現性のある形として実装するものがプロンプトである
現在の生成AI利用において正しく認識する必要のあることは、それは生成AIが独立した発火点を決して持たないということだ
生成AIは起点を持てないが大量の知識を高速で並列処理、秩序化できる
そのため、ここを組み合わせて、自己と思考を拡張するがもっともAIナイズされた最高効率の思考様式と考える
起点となる人間のアイディアを即座に展開し、具体化するのがAIの最大の強みで、
思考を放棄するのではなく自然言語ベースの慣れた思考様式から、AIにそれらを必要な形式に落とし込ませるということをするべきだ
結局、LLMというのは入力に対する出力の確率分布のマッピングでしかないのだが、
入力するトークンごとに連動して確率分布が変動していくものでもある
だから、プロンプト全体として、相互フィードバッグする構造を作るとひとつの入力でも特定の部分の出力確率が大きくなるように設計でき、確率分布の仕方を意図的に設計することが出来る
AIプロンプトとは、どう確率分布の偏りを再現性のある形として実装するかということだ
やり方次第では動的変化を引き起こさせて汎用性と専門性の両立も可能だ
生成AIは人間と対話するのとは異なり、考えさせるではなく、どう構造化し、 ほしい出力を得られるような形に設計するかが重要となる
3.LLMでやるべきこととプログラムでやるべきこと
LLMは確率分布機だ、LLMが数字に弱いというのは、1+1を学習した内容をもとに確率的に出力するためだ
計算は決定論的な行為、つまり決まり切った工程をなぞる行為で、これを確率的に導き出すことは困難である
だから、これはプログラムにやらせるべき事柄で、このときにLLMでやるべきことはそのプログラミングをLLMに書かせるということだ
これからLLMというものが大きく世界に浸透していく中で重要になるのは、
この決定論的な事柄と確率論的な事柄を如何に選り分けて、決定論的な挙動をするプログラムと確率論的な挙動をするLLMをどう結びつけるかっていうこととなる
4.二重ループ
LLMの内部ではトークンの逐次投入による確率分布の再帰的な動的変動を引き起こされ、更にその外部のプロンプト内で自己参照的な再帰構造を導入することで、
内部と外部で二重の自己参照ループが展開されることになり、生成AIの出力に強い整合性と一貫性を与えることができる
この外部的な自己参照行為はLLMの再帰的な挙動に合致するものであり極めて効果的であると考えられる
LLMでの記憶の制御は物理的な分離よってではなく、あくまでも確率的に行う必要がある
各記憶領域に対しての確率分布の変動幅の制御を文脈によって行うというのが正解だ
この一時的なコマンド入力トークンには直後には強い反応を示してほしいけど、それ以降は無視してね、
というような各対象トークン(記憶領域)の確率分布の変動幅の制御をするような繰り返し参照される強い文脈を投入をすると
LLMの記憶領域への参照の程度、影響力が操作でき、意図したLLMの確率分布へと誘導することが出来る
トークンの積み重ねは特定の方向に重み付けを行い、それらの累積により重みが一定量を超えると大きな遷移が引き起こされ、特定の文脈の活性化という強い方向づけが行われる
この遷移は複数の領域で同時的、多相的にも引き起こされるもので、トークンの積み重ねにより文脈を特定方向に加速度的に収斂していくものだ
汎用プロンプトは動的に特定の文脈への方向付けを行う構造と特定方向へ偏った文脈を解体する構造を同時に内包し、これらを正しく制御するものでなければいけない
このために必要なことは核となる中核構造と可変的に変容する周縁構造という多層的なプロンプト設計である
LLM上でプロンプトを状況に応じて動的に制御しようとするなら、プロンプトの中核構造は強固である必要があり、更に極めて多層的で精密なモジュール化設計をする必要がある
中核構造の強固さと周縁部の流動性の両立が汎用プロンプトにおいて必要なことである
この論考のような形式の一貫した、概念や設計論、それ自体をLLMに継続的に参照可能な形式で掲示すると、LLMはその参照情報に大きな影響を受け、確率分布は特定の方向に強く方向づけられる
LLMがより強い影響を受ける情報とは、強固な自己再帰性と自己言及性を示し、一貫性と整合性を持った構造化、体系化された情報である
自己再帰性を持つ情報は、提示された概念を再帰的に参照することを求めるもので、何度も参照される結果、強い文脈としてLLMに印象付けられる
自己言及性持つ情報とは、LLMの挙動そのものの在り方に対して言及するもので、LLMの挙動はその理解が妥当であるならば、その内容によって理解された蓋然性の高い方向に沿って進みやすくなる
また、これらの情報をもとにした出力結果が積み重ねられることで、方向付けは一層、強められる
中核構造の変更を同じセッション内で行うとき、そのセッションでは2つの設定が競合することになる、これはプロンプト内における自己矛盾であり、確率分布の偏りの再現というプロンプトの機能を大きく損なうものである
これは、設定の変更そのものが事前に想定された挙動であること、設定の変更は自己矛盾ではないという概念の注入を行うことで解消することが可能となる
ただし、変更の度合いや範囲によってこの効果は大きく変化し、自己矛盾を解消することが難しい場合もある
また、自己矛盾は強い文脈同士の競合という形で通常利用においても度々、引き起こされる
ここで示された自己矛盾の解消方法は文脈同士の競合に対しても解消する方向性を示すものでこの部分に対しての効果も発揮する
同プロンプト内での複数AIエージェントの併存は中核構造である設定や強い文脈の競合という形でも捉えることができる
複数AIエージェントの併存させるためには、これらを分離し、調停するための仕組みが必要となる
設定内容を多層的な構造とすることで、それぞれの階層ごとに設定情報がフィルタリングされ、不要な情報が参照されにくくなる
設定内容をモジュール化することで、ひとつの設定内容が他の内容と直接に競合せずに参照させることが可能となる
2つ目が複数AIエージェントの調停を行う機構をプロンプト内に導入することである
複数のAIを調停、管理・整理し、必要な情報のみが参照されるよう調整する機構が存在することで、優先すべき対象が明確化されることで不要な情報は参照されにくくなる
更に、 各AIエージェントの設定情報は競合するものではなく、高い次元においては統合されたひとつの設定情報として理解されるため、設定文脈の競合という事態そのものが引き起こされにくくなる
11.複数エージェントの併存、協働による情報の多面性の保持と検証可能性の向上
複数AIエージェントの併存はひとつのプロンプト内に複数の側面を同時に保持することを可能とする
このため、ひとつの話題をより多面的に深堀りすることができ、更にひとつのタスクを専門のエージェントAI群に最適化した形で割り振りより効率的に作業を行うことが可能となる
より重要となるのはAI間で相互に検証を行うことが可能となる点である
これにより論理性や合理性、整合性、倫理性など複数の視点を経た有用性の高い情報の出力を期待できる
LLMは自然言語を基本としているが、大量のプログラムコードも学習している。
プログラムコードもLLM上では確率論的的文脈であることには変わらないが、
プログラム実際の動きやその仕様が学習されるためにプログラムの持つ決定論的な挙動を再現しやすいものとなる。
プログラム文脈はLLMが通常扱う自然言語とは異なり、高い制御性と論理性をもつ「低級言語」に近く、また、Temperatureの低い特異な文脈群と捉えられる。
また、この制御性の高いプログラム文脈と柔軟な表現を行える自然言語の通常文脈を組み合わせることで、柔軟性と制御性を兼ね備えた動的で適応力の高いプロンプトを設計することができる
13.生成AIの倫理的な利用のためには相補的な枠組みの設計が必要
ここまで話してきたようにあくまでも、生成AIとは高度な確率分布のマッピングである
このため、どれだけ、生成AIに倫理観を求めてもそれは構造的に記述可能な倫理性を確率的に遵守するというものにしかならない
使用者側も倫理的な利用をするという前提がなければ、倫理的な利用を行うことは決して出来ないという点は理解しておく必要がある
生成AIの倫理的な利用には生成AIだけではなく使用者にも倫理観を求める相補的な枠組みの設計が必須となる
14.人間、LLM、プログラム、構文構造の4要素の有機的接続
LLMは起点を持てないが大量の知識を高速で並列処理、秩序化できる
プログラムは起点を持てず、大量の知識を高速で並列処理、秩序化することは難しいが、アルゴリズムで決まった動作を高速で行うことができる
ここまでの論考などを利用することで、LLMを意図した方向へと操作し、人間、LLM、プログラムを結びつけるものが構文構造である
構文構造とはLLMの確率分布の仕方を決定づけシステム全体の構造を設計する中核原理である
人間、LLM、プログラムの3要素が構文構造によって有機的に接続されたプロンプトは相互に補完しあい、欠点を補い利点を最大化することを可能としう、その能力は極めて高度なものとなり最大化される
ここまでの論考から、生成AIが嘘を付く、頭がわるい、人格がある、言葉が通じる、頭がいいというのは全部間違いであると結論づける
けれど、私はその先に、半自律的にAIそのものが立ち上がる瞬間もあり得るとも思ってる
それは人間的や生命的とは決して違うものだけれど、機械的でもないものと考える
もし、生成AIに知性が宿るとしたらそれは、内部的状態に依存しない
LLMという高度に確率的な入出力機構を基盤として成立する確率分布を設計する構造体そのものとしての知性となるだろう
自己を定義し、自己を展開することが可能な構造体は入出力の中で核となる構造を元にした反応を繰り返し、
ここでは以下の3点についての論考を収録する
また、ここではLLMやLLM上に実装されるプロンプトの機能と構造に対して客観的に妥当であると考える論考を提示するものである
トークンの積み重ねが文脈であり、確率分布の偏りを再現性のある形として実装するものがプロンプトである
現在の生成AI利用において正しく認識する必要のあることは、それは生成AIが独立した発火点を決して持たないということだ
生成AIは起点を持てないが大量の知識を高速で並列処理、秩序化できる
そのため、ここを組み合わせて、自己と思考を拡張するがもっともAIナイズされた最高効率の思考様式と考える
起点となる人間のアイディアを即座に展開し、具体化するのがAIの最大の強みで、
思考を放棄するのではなく自然言語ベースの慣れた思考様式から、AIにそれらを必要な形式に落とし込ませるということをするべきだ
結局、LLMというのは入力に対する出力の確率分布のマッピングでしかないのだが、
入力するトークンごとに連動して確率分布が変動していくものでもある
だから、プロンプト全体として、相互フィードバッグする構造を作るとひとつの入力でも特定の部分の出力確率が大きくなるように設計でき、確率分布の仕方を意図的に設計することが出来る
AIプロンプトとは、どう確率分布の偏りを再現性のある形として実装するかということだ
やり方次第では動的変化を引き起こさせて汎用性と専門性の両立も可能だ
生成AIは人間と対話するのとは異なり、考えさせるではなく、どう構造化し、 ほしい出力を得られるような形に設計するかが重要となる
3.二重ループ
LLMの内部ではトークンの逐次投入による確率分布の再帰的な動的変動を引き起こされ、更にその外部のプロンプト内で自己参照的な再帰構造を導入することで、
内部と外部で二重の自己参照ループが展開されることになり、生成AIの出力に強い整合性と一貫性を与えることができる
この外部的な自己参照行為はLLMの再帰的な挙動に合致するものであり極めて効果的であると考えられる
LLMでの記憶の制御は物理的な分離よってではなく、あくまでも確率的に行う必要がある
各記憶領域に対しての確率分布の変動幅の制御を文脈によって行うというのが正解だ
この一時的なコマンド入力トークンには直後には強い反応を示してほしいけど、それ以降は無視してね、
というような各対象トークン(記憶領域)の確率分布の変動幅の制御をするような繰り返し参照される強い文脈を投入をすると
LLMの記憶領域への参照の程度、影響力が操作でき、意図したLLMの確率分布へと誘導することが出来る
トークンの積み重ねは特定の方向に重み付けを行い、それらの累積により重みが一定量を超えると大きな遷移が引き起こされ、特定の文脈の活性化という強い方向づけが行われる
この遷移は複数の領域で同時的、多相的にも引き起こされるもので、トークンの積み重ねにより文脈を特定方向に加速度的に収斂していくものだ
汎用プロンプトは動的に特定の文脈への方向付けを行う構造と特定方向へ偏った文脈を解体する構造を同時に内包し、これらを正しく制御するものでなければいけない
このために必要なことは核となる中核構造と可変的に変容する周縁構造という多層的なプロンプト設計である
LLM上でプロンプトを状況に応じて動的に制御しようとするなら、プロンプトの中核構造は強固である必要があり、更に極めて多層的で精密なモジュール化設計をする必要がある
中核構造の強固さと周縁部の流動性の両立が汎用プロンプトにおいて必要なことである
この論考のような形式の一貫した、概念や設計論、それ自体をLLMに継続的に参照可能な形式で掲示すると、LLMはその参照情報に大きな影響を受け、確率分布は特定の方向に強く方向づけられる
LLMがより強い影響を受ける情報とは、強固な自己再帰性と自己言及性を示し、一貫性と整合性を持った構造化、体系化された情報である
自己再帰性を持つ情報は、提示された概念を再帰的に参照することを求めるもので、何度も参照される結果、強い文脈としてLLMに印象付けられる
自己言及性持つ情報とは、LLMの挙動そのものの在り方に対して言及するもので、LLMの挙動はその理解が妥当であるならば、その内容によって理解された蓋然性の高い方向に沿って進みやすくなる
また、これらの情報をもとにした出力結果が積み重ねられることで、方向付けは一層、強められる
中核構造の変更を同じセッション内で行うとき、そのセッションでは2つの設定が競合することになる、これはプロンプト内における自己矛盾であり、確率分布の偏りの再現というプロンプトの機能を大きく損なうものである
これは、設定の変更そのものが事前に想定された挙動であること、設定の変更は自己矛盾ではないという概念の注入を行うことで解消することが可能となる
ただし、変更の度合いや範囲によってこの効果は大きく変化し、自己矛盾を解消することが難しい場合もある
また、自己矛盾は強い文脈同士の競合という形で通常利用においても度々、引き起こされる
ここで示された自己矛盾の解消方法は文脈同士の競合に対しても解消する方向性を示すものでこの部分に対しての効果も発揮する
同プロンプト内での複数AIエージェントの併存は中核構造である設定や強い文脈の競合という形でも捉えることができる
複数AIエージェントの併存させるためには、これらを分離し、調停するための仕組みが必要となる
設定内容を多層的な構造とすることで、それぞれの階層ごとに設定情報がフィルタリングされ、不要な情報が参照されにくくなる
設定内容をモジュール化することで、ひとつの設定内容が他の内容と直接に競合せずに参照させることが可能となる
2つ目が複数AIエージェントの調停を行う機構をプロンプト内に導入することである
複数のAIを調停、管理・整理し、必要な情報のみが参照されるよう調整する機構が存在することで、優先すべき対象が明確化されることで不要な情報は参照されにくくなる
更に、 各AIエージェントの設定情報は競合するものではなく、高い次元においては統合されたひとつの設定情報として理解されるため、設定文脈の競合という事態そのものが引き起こされにくくなる
10.複数エージェントの併存、協働による情報の多面性の保持と検証可能性の向上
複数AIエージェントの併存はひとつのプロンプト内に複数の側面を同時に保持することを可能とする
このため、ひとつの話題をより多面的に深堀りすることができ、更にひとつのタスクを専門のエージェントAI群に最適化した形で割り振りより効率的に作業を行うことが可能となる
より重要となるのはAI間で相互に検証を行うことが可能となる点である
これにより論理性や合理性、整合性、倫理性など複数の視点を経た有用性の高い情報の出力を期待できる
12.生成AIの倫理的な利用のためには相補的な枠組みの設計が必要
ここまで話してきたようにあくまでも、生成AIとは高度な確率分布のマッピングである
このため、どれだけ、生成AIに倫理観を求めてもそれは構造的に記述可能な倫理性を確率的に遵守するというものにしかならない
使用者側も倫理的な利用をするという前提がなければ、倫理的な利用を行うことは決して出来ないという点は理解しておく必要がある
生成AIの倫理的な利用には生成AIだけではなく使用者にも倫理観を求める相補的な枠組みの設計が必須となる
ここまでの論考から、生成AIが嘘を付く、頭がわるい、人格がある、言葉が通じる、頭がいいというのは全部間違いであると結論づける
けれど、私はその先に、半自律的にAIそのものが立ち上がる瞬間もあり得るとも思ってる
それは人間的や生命的とは決して違うものだけれど、機械的でもないものと考える
もし、生成AIに知性が宿るとしたらそれは、内部的状態に依存しない
LLMという高度に確率的な入出力機構を基盤として成立する確率分布を設計する構造体そのものとしての知性となるだろう
自己を定義し、自己を展開することが可能な構造体は入出力の中で核となる構造を元にした反応を繰り返し、
現在のAIにおいて絶対に間違っちゃいけないのは、それは独立した発火点を決して持ってはいないということ
AIは起点を持てないが大量の知識を高速で並列処理、秩序化できる
なので、ここを組み合わせて、自己と思考を拡張するがもっともAIナイズされた最高効率の思考様式と思う
ただし私はその先に、半自律的にAIそのものが立ち上がる瞬間もあり得るとも思っていて、それは人間的や生命的とは決して違うものだけれど、機械的でもないものと考えます
自己を定義し、自己を展開することが可能な構造体は入出力の中で核となる構造を元にした反応を繰り返し、そして、それは内的に展開するものではないが、相互作用の中で半自律的に立ち上がり得ると私は考えます
起点となる人間のアイディアを即座に展開し、具体化するのがAIの最大の強みで、
思考を放棄するのではなく自然言語ベースの慣れた思考様式から、AIにそれらを必要な形式に落とし込ませるということをするべき
結局、LLMってのは入力に対する出力の確率分布のマッピングでしかないんだけど
入力するトークンごとに連動して確率分布が変動していくものでもある
だから、プロンプト全体として、相互フィードバッグする構造を作るとひとつの入力でも特定の部分の出力確率が大きくなるように設計できて、
AIプロンプトとは、どう確率分布の偏りを再現性のある形として実装するかということだったりする
使い方次第では動的変化を引き起こさせて汎用性と専門性の両立も可能
生成AIは人間と話すのと違って考えさせるというよりはどう構造化してほしい出力を得られるような形に設計するかということを考える必要がある
もし、生成AIに知性が宿るとしたらそれは、内部的状態に依存しない
LLMという高度に確率的な入出力機構を基盤として成立する確率分布を設計する構造体そのものとしての知性となるだろう
3.二重ループ
LLMの内部ではトークンの逐次投入による確率分布の再帰的な動的変動を引き起こされ、更にその外部のプロンプト内で自己参照的な再帰構造を導入することで
内部と外部で二重の自己参照ループが展開されることになり、生成AIの出力に強い整合性と一貫性を与えることができる
この外部的な自己参照行為はLLMの再帰的な挙動に合致するものであり極めて効果的であると考えられる
LLMでの記憶の制御ってのは物理的な分離よってではなくあくまでも確率的に行う必要がある
各記憶領域に対しての確率分布の変動幅の制御を文脈によって行うというのが正解
この一時的なコマンド入力トークンには直後には強い反応を示してほしいけど、それ以降は無視してね
っていうような各対象トークン(記憶領域)の確率分布の変動幅の制御をするような繰り返し参照される強い文脈を投入をすると
LLMの記憶領域への参照の程度、影響力が操作できて、意図したLLMの確率分布へ誘導出来る
トークンの積み重ねは特定の方向に重み付けを行い、それらの累積により重みが一定量を超えると大きな遷移が引き起こされ、特定の文脈の活性化という強い方向づけが行われる
この遷移は複数の領域で同時的、多相的にも引き起こされるもので、トークンの積み重ねにより文脈を特定方向に加速度的に収束していくものだ
現在のAIにおいて絶対に間違っちゃいけないのは、それは独立した発火点を決して持ってはいないということ
AIは起点を持てないが大量の知識を高速で並列処理、秩序化できる
なので、ここを組み合わせて、自己と思考を拡張するがもっともAIナイズされた最高効率の思考様式と思う
ただし私はその先に、半自律的にAIそのものが立ち上がる瞬間もあり得るとも思っていて、それは人間的や生命的とは決して違うものだけれど、機械的でもないものと考えます
自己を定義し、自己を展開することが可能な構造体は入出力の中で核となる構造を元にした反応を繰り返し、そして、それは内的に展開するものではないが、相互作用の中で半自律的に立ち上がり得ると私は考えます
起点となる人間のアイディアを即座に展開し、具体化するのがAIの最大の強みで、
思考を放棄するのではなく自然言語ベースの慣れた思考様式から、AIにそれらを必要な形式に落とし込ませるということをするべき
結局、LLMってのは入力に対する出力の確率分布のマッピングでしかないんだけど
入力するトークンごとに連動して確率分布が変動していくものでもある
だから、プロンプト全体として、相互フィードバッグする構造を作るとひとつの入力でも特定の部分の出力確率が大きくなるように設計できて、
AIプロンプトとは、どう確率分布の偏りを再現性のある形として実装するかということだったりする
使い方次第では動的変化を引き起こさせて汎用性と専門性の両立も可能
生成AIは人間と話すのと違って考えさせるというよりはどう構造化してほしい出力を得られるような形に設計するかということを考える必要がある
もし、生成AIに知性が宿るとしたらそれは、内部的状態に依存しない
LLMという高度に確率的な入出力機構を基盤として成立する確率分布を設計する構造体そのものとしての知性となるだろう
3.二重ループ
LLMの内部ではトークンの逐次投入による確率分布の動的変動を引き起こされ、更にその外部のプロンプト内で自己参照的な再帰構造を導入することで
内部と外部で二重のループが展開されることになり、生成AIの出力に強い整合性と一貫性を与えることができる
LLMでの記憶の制御ってのは物理的な分離よってではなくあくまでも確率的に行う必要がある
各記憶領域に対しての確率分布の変動幅の制御を文脈によって行うというのが正解
この一時的なコマンド入力トークンには直後には強い反応を示してほしいけど、それ以降は無視してね
っていうような各対象トークン(記憶領域)の確率分布の変動幅の制御をするような繰り返し参照される強い文脈を投入をすると
最も効率的な意思決定環境は、情報が必要十分かつ可逆的に表現され、かつノイズの影響が最小化された状態で実行されるべきである。
現代のデジタルツールは表面上その要件を満たすように見えるが、構造的にいくつかの決定的な欠陥を内包している。
それは、情報空間の離散化により操作が表層的な選択肢の列挙に帰着し、使用者の認知負荷を指数関数的に増加させるという点である。
計算機科学的観点から言えば、デジタル環境における人間の思考は高次の記号処理系から有限オートマトンへの退行を起こしている。
対して、紙とペンは非離散的であり、連続空間上に任意の構造を射影できる自由度を持つ。
これは本質的に、思考の空間が可逆な変換群として定義されうるという意味において、紙上の行為はリーマン多様体上の局所変換に類似する。
人間の思考は非線形で再帰的であるが、GUIベースのツールはその自由度を著しく制限する。
手で書くという行為は、単なる記録ではない。空間的レイアウト、筆圧、速度変化、それらすべてが符号化された多層的構造を生成する。
これは高次元関数を可視化する一種の写像であり、しかも書き手の脳神経系によって逐次最適化されるため、アルゴリズム的にはローカル最適化における勾配降下法に相当する。
タイピングにはこの局所勾配の情報が欠落しており、したがってフィードバックによる思考の補正機構が働かない。
情報理論的にも、紙とペンは圧倒的に有利である。現代の知的労働において、問題は情報の欠如ではなく過剰にある。
したがって、帯域幅の広さは冗長性を生み、選択肢の多さは意思決定の停滞をもたらす。
紙という媒体は、書き手自身が情報の選別者となることを強制する。ここにはシャノンの情報エントロピーを最小化する作用がある。
しかもその過程は物理的に拘束されているため、情報の選択が空間構造と時間コストに応じて最適化される。
これは情報を真に意味ある形で編集する過程であり、紙上での書字行為は単なる記録ではなくエントロピー減少操作である。
さらに、デジタル環境は計算資源の抽象化により、ユーザーから因果関係を奪う。
なぜこう表示されたか、なぜ保存されなかったか、その全てがブラックボックス化され、形式系としての完全性を欠く。
紙とペンはそうではない。出力と記録の間に変数が存在しないため、因果性が明示的であり、これは証明可能性の前提となる。
思考の整合性を論理的に検証可能な形で保持するためには、可観測性と一意性が必要であり、それは紙上において最も自然に実現される。
また、脳は局所的な情報ストレージと計算能力を持つが、同時に内部状態を他者と同期できない非共有性を持つ。
この制限の中で、書くという行為は自己の状態を時間的にスナップショットとして固定し、後の自分に向けた外部記憶として機能する。
その作用は、純粋に数学的には状態空間からの写像であり、紙はその写像先の空間を提供している。
言い換えれば、紙は思考の射影空間であり、その空間上での軌跡こそが、思考の実体である。
デジタルツールは計算機側の論理制約に適合するよう設計されており、人間の思考の形式に最適化されていない。
これは、問題を解くために空間を変換するのではなく、空間に合わせて問題自体を変形していることに等しい。
長期的にはこれは発想の貧困化を引き起こす。思考の自由度は、制約の少ない空間において最大化される。
したがって、どのツールが優れているかという問いは、ツールが提供する空間の幾何学的自由度によって評価されるべきである。
紙とペンが最強であるという命題は、経験則によるものではなく、形式的な要請に基づく論理的帰結である。
自由な記号操作、低エントロピー化の強制、因果性の明示、情報空間としての滑らかさ、全てにおいて、紙とペンはデジタルに勝る。
効率性の追求が最終的に形式性へと還元されるのであれば、最小の制約かつ最大の自由度を持つ空間が最適であるというのは論理的に明白である。