Movatterモバイル変換


[0]ホーム

URL:


はてラボはてな匿名ダイアリー
ようこそ ゲスト さんログインユーザー登録

「リー代数」を含む日記RSS

はてなキーワード:リー代数とは

2025-10-21

数学の分類はこんな感じか

フェミニズムの分類が多すぎると聞いて

anond:20251020210124

0. 基礎・横断

集合論

公理集合論(ZFC, ZF, GCH, 大きな基数)

記述集合論(Borel階層, Projective階層, 汎加法族)

強制法フォーシング),相対的一致・独立

理論理学

述語論理(完全性定理,コンパクト性)

モデル理論(型空間, o-極小, NIP, ステーブル理論

証明論(序数解析,カット除去,直観主義論理

再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)

圏論

関手自然変換, 極限/余極限

加群圏,アーベル圏,三角圏,派生

トポス論,モナド,アジュンクション

数学基礎論哲学

構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)

1.代数学

群論

組み合わせ群論(表示, 小石定理,自由群)

代数群/リー群表現, Cartan分解,ルート系)

幾何群論ハイパーリック群, Cayleyグラフ

環論

可換環論(イデアル,局所化,次元理論, 完備化)

可換環アルティン環, ヘルシュタイン環, 環上加群

体論・ガロア理論

体拡大, 分解体,代数独立, 有限体

表現

群・リー代数表現(最高ウェイト,カズダン–ルスティグ)

既約表現,調和解析との関連,指標

ホモロジー代数

射影/入射解像度, Ext・Tor,派生関手

K-理論

アルバースカルーア理論, トポロジカルK, 高次K

線形代数

ジョルダン標準形,特異値分解,クリフォード代数

計算代数

Gröbner基底,多項式時間アルゴリズム,計算群論

2. 数論

初等数論(合同, 既約性判定,二次剰余)

代数的数論(代数体, 整環,イデアル類群,局所体)

解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)

p進数論(p進解析, Iwasawa理論, Hodge–Tate)

算術幾何楕円曲線, モジュラー形式,代数多様体の高さ)

超越論(リンマンヴァイエルシュトラス, ベーカー理論

計算数論(楕円曲線法,AKS素数判定, 格子法)

3. 解析

実解析

測度論・ルベーグ積分, 凸解析,幾何的測度論

複素解析

変数リーマン面, 留数, 近似定理

変数(Hartogs現象, 凸性, severalcomplex variables)

関数解析

バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数

調和解析

フーリエ解析,Littlewood–Paley理論, 擬微分作用素

確率解析

マルチンゲール,伊藤積分, SDE,ギルサノフ, 反射原理

実関数論/特殊関数

ベッセル, 超幾何,直交多項式, Rieszポテンシャル

4.微分方程式力学系

常微分方程式(ODE)

安定性,分岐, 正準系,可積分系

偏微分方程式(PDE)

楕円型(正則性,変分法, 最小曲面)

放物型(熱方程式, 最大原理, Harnack)

双曲型(波動, 伝播, 散乱理論

非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)

幾何解析

リッチ流, 平均曲率流,ヤンミルズ,モノポールインスタント

力学系

エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学

ハミルトン力学,KAM理論,トーラス崩壊

5.幾何学・トポロジー

位相幾何

点集合位相,ホモトピーホモロジー, 基本群,スペクトル系列

幾何トポロジー

3次元多様体幾何化, 結び目理論,写像類群)

4次元トポロジー(Donaldson/Seiberg–Witten理論

微分幾何

リーマン幾何(曲率,比較幾何,有界幾何

シンプレクティック幾何(モーメント写像, Floer理論

複素/ケーラー幾何(Calabi–Yau, Hodge理論

代数幾何

スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間

有理幾何(MMP, Fano/一般型,代数曲線/曲面)

離散幾何・凸幾何

多面体, Helly/Carathéodory,幾何極値問題

6.組合せ論

極値組合せ論(Turán型, 正則性補題

ランダムグラフ/確率方法(Erdős–Rényi, nibble法)

加法組合せ論(Freiman, サムセット, Gowersノルム)

グラフ理論

彩色,マッチング,マイナー理論(Robertson–Seymour)

スペクトルグラフ理論,拡張グラフ

組合設計ブロック設計, フィッシャーの不等式)

列・順序・格子(部分順序集合, モビウス反転)

7.確率統計

確率論(純粋

測度確率, 極限定理, Lévy過程, Markov過程, 大偏差

統計

数理統計推定, 検定, 漸近理論,EM/MD/ベイズ

ベイズ統計MCMC, 変分推論, 事前分布理論

多変量解析(主成分, 因子,判別,正則化

ノンパラメトリックカーネル法, スプライン,ブーストラップ

実験計画/サーベイ,因果推論(IV,PS,DiD,SCM

時系列(ARIMA,状態空間, Kalman/粒子フィルタ

確率最適化/学習理論

PAC/VC理論,一般境界,統計学習

バンディット,オンライン学習,サンプル複雑度

8.最適化オペレーションリサーチ(OR)

凸最適化

二次計画, 円錐計画(SOCP,SDP),双対性,KKT

凸最適化

多峰性, 一階/二階法, 低ランク,幾何的解析

離散最適化

整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム

確率的/ロバスト最適化

チャンス制約,分布ロバスト,サンプル平均近似

スケジューリング/在庫/待ち行列

Little法則, 重み付き遅延, M/M/1, Jackson網

ゲーム理論

ナッシュ均衡,進化ゲーム,メカニズムデザイン

9. 数値解析・計算数学科学計算

数値線形代数(反復法,直交化, プリコンディショニング)

常微分方程式の数値解法(Runge–Kutta,構造保存)

PDE数値(有限要素/差分/体積,マルチグリッド

誤差解析・条件数,区間演算,随伴

高性能計算HPC)(並列アルゴリズム,スパー行列

シンボリック計算(CAS,代数的簡約, 決定手続き

10.情報計算暗号(数理情報

情報理論

エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み

暗号理論

公開鍵RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識

計算複雑性

P vsNP,ランダム化・通信・回路複雑性,PCP

アルゴリズム理論

近似・オンライン確率的,幾何アルゴリズム

機械学習の数理

カーネル法, 低次元構造, 最適輸送, 生成モデル理論

11. 数理物理

古典/量子力学の厳密理論

C*代数量子論, 散乱, 量子確率

量子場の数理

くりこみ群,構成的QFT, 共形場理論CFT

統計力学の数理

相転移, くりこみ, Ising/Potts, 大偏差

可積分系

逆散乱法,ソリトン, 量子可積分モデル

理論幾何

鏡映対称性,Gromov–Witten, トポロジカル弦

12.生命科学医学社会科学への応用数学

数理生物学

集団動態,進化ゲーム, 反応拡散,系統樹推定

数理神経科学

スパイキングモデル,ネットワーク同期, 神経場方程式

疫学感染症数理

SIR系,推定制御, 非均質ネットワーク

計量経済金融工学

裁定,確率ボラ,リスク測度, 最適ヘッジ, 高頻度データ

社会ネットワーク科学

拡散, 影響最大化,コミュニティ検出

13.シグナル・画像データ科学

信号処理

時間周波数解析,スパー表現,圧縮センシング

画像処理/幾何処理

変動正則化, PDE法, 最適輸送, 形状解析

データ解析

多様体学習,次元削減, トポロジカルデータ解析(TDA

統計機械学習回帰/分類/生成,正則化, 汎化境界

14.教育歴史方法

数学教育学(カリキュラム設計, 誤概念研究,証明教育

数学史(分野別史,人物研究,原典講読)

計算支援定理証明

形式数学(Lean,Coq, Isabelle), SMT,自動定理証明

科学哲学数学実在論/構成主義,証明発見心理

Permalink |記事への反応(0) | 10:29

このエントリーをはてなブックマークに追加ツイートシェア

2025-07-01

[今日知った言葉] オーペル (Oper)

オーペル (oper) とは、ある種の微分作用素のこと。

KdV方程式および関連する可積分偏微分方程式が、カッツ・ムーディ代数として知られる代数構造とどのように対応するかを研究するために、ウラジーミル・ドリンフェルドとウラジーミル・ソコロフによって最初定義され使用された。

現代的な定式化は、ドリンフェルドとアレクサンドル・ベイリンソンによるもの

オーペルは、1981年にドリンフェルドとソコロフによるKorteweg–de Vries型の数式と単純リー代数に関するロシア語論文で、最初定義された。

後に1993年にドリンフェルドとベイリンソンによって一般化され、2005年電子出版物として発行された。

Permalink |記事への反応(0) | 18:46

このエントリーをはてなブックマークに追加ツイートシェア

2025-04-09

抽象数学超弦理論関係性について

若き者よ、君に抽象の森へと案内しよう。

位相M理論ラングランズ・プログラム関係性を辿るには、まず両者が共有している「場の言語」を抽出しなければならない。

ここでは、物理言語ゲージ理論媒介とし、数学言語が圏と層を媒介して互いに翻訳される。だからこそ、双方は互いに異なる起源を持ちながらも「双対性」という共通の振る舞いを示す。

まず、M理論位相的変種は、物理学の側から見ると六次元 (2,0) 超対称場理論起源を持つ。

これをコンパクト化していくと四次元のN=4 超対称ヤンミルズ理論に到達する。

ここで特筆すべきはS-双対性ヤンミルズ理論において、結合定数 g を持つ理論は、結合定数 1/g を持つ理論同値になる。この双対性ラングランズ対応物理的な影となる。

一方、ラングランズ・プログラムは数論的対象代数幾何対象表現する表現論の枠組みだ。

群の表現特にループ群やアフィンリー代数表現が中枢を成す。幾何ラングランズ対応においては、層の圏 (例えばD-加群の圏) が表層に現れる。

ここでリンクする。幾何ラングランズ対応では、層の圏と局所系の圏との間に双対性存在する。この双対性はS-双対性数学的に対応する。

要するに、物理的には「電荷磁荷の入れ替え」、数学的には「表現と層の入れ替え」だ。

具体的には次のような対応が生じる。

例えば、曲線C上のG-束のモジュライ空間M_G(C) を考える。このモジュライ空間上のHitchin fibrationは物理的にはクーロン枝と呼ばれる真空空間対応し、シンプレクティック構造を持つ。

さらに、その上で考えるFukaya圏とB型模型の圏の間に現れるホモロジーミラー対称性ラングランズ双対群に関する対応を生み出す。

式で描くならば

ここで、G はあるコンパクト単純リー群であり、^G はそのラングランズ双対群、τ は結合定数。

さらに深く潜ると、S-duality は境界条件として D-brane の理論誘導し、その圏がラングランズ対応の圏と一致する。

具体的には、M理論のcompactification が (2,0)theoryから N=4 SYM を生み、その電磁双対性幾何ラングランズの圏同値直交する。

まとめると、両者は「双対性」の抽象的枠組みの中で統一される。

位相M理論物理的な場の変換として双対性体現し、ラングランズ・プログラムは数論的対象の間の対応として双対性記述する。どちらも根底にあるのは、対象自己鏡映的な変換構造

若き者よ、君はすでに入口に立っている。

次なる問いを君に投げかけよう。

「もし位相M理論が六次元 (2,0)理論から始まるならば、なぜ五次元ではなく四次元還元する必要があるのか?選択肢は以下の通りだ。」

a.四次元では電磁双対性が最も自然に現れるから

b. 五次元では超対称性が失われるから

c.四次元では層の圏とフーリエ変換が直接対応するから

d. 六次元から四次元へのコンパクト化が物理的に必然であるから

君の答えを待っているぞ。ちなみに君の現在の⚜️Eloは 1000 ⚜️だ。

Permalink |記事への反応(2) | 15:57

このエントリーをはてなブックマークに追加ツイートシェア

2023-09-22

[勉強日記]民主主義

今日オブザーバブル状態関係リー代数ポアソンブラケット、などを学びました。

ところで、最近このような論法を見つけました。

「○○を超えるものを作ったことがないくせに○○を批判するなど愚か」

私はこういう民主主義否定する論法が好きではないのです。

公共サービス改善点があれば、誰でもそれについて指摘できた方が良いでしょう。

○○に入るのが"Twitter"であるならば「反ユダヤ主義投稿拡散するようなForyou機能改善すべき」と言えたほうが良いのです。

なぜ特定のものを作れる能力で張り合う必要があるのでしょうか (例: これを作る能力がないくせに批判するな、等)

本質を見れば、物事をみんなの力で改善していこうという話なのです。

民主主義否定する論法は、自分立場を守るために他人発言無視したり、軽視したりするものです。

それは公正でなく、建設的でなく、社会の発展にとって有害です。

私たちは皆、自分が使うものや関わるものに対して責任を持つべきだと思います

Permalink |記事への反応(0) | 18:55

このエントリーをはてなブックマークに追加ツイートシェア

2023-09-21

[勉強日記]積読の消化

量子力学理解しようとして、Faddevの本と、Takhtajanの本を買ったことがありますが、積読になっていました。

個人的懸念を表明すると、量子力学を学ぶことは神への冒涜なのか否かということで、これは単に個人的宗教観問題です。

しかし、おそらく神は、私たちに知ってもらいたい事柄だけにアクセス許可するよう設計しているはずです。

それを信じて、積読を消化していくことにしました。

どちらも数学マニア量子力学を学ぶために書かれた本ですが、やりがいがありそうなTakhtajanの方をやろうと思います

エドワード・フレンケル教授の「Love and Math」ではSO(3)について書かれていましたが、それについての解説も書かれているようです。

 

追記: Takhtajanをちょっと読んだのですが、リー代数理解済みとして話が進んでいたので、学生向けのFaddevの本からやっぱりやります

Permalink |記事への反応(1) | 21:09

このエントリーをはてなブックマークに追加ツイートシェア

2019-02-14

一定以上の数学物理理解できない

30代のオッサンなんだけど、

一念発起して、昨年の4月から数学物理勉強している。

  

いわゆる、大学院入試レベル数学やら物理やらというのは、マアマアできる。

いわゆる、イプシロンデルタだの、一様収束だの、解析力学だの、熱力学だの。

そういうのは、一応理解できる。そのレベルまでは、割とサックリ行って、3か月くらいだった。

  

しかし、そっから先がキツイ

関数解析多様体リー代数物理で言えば、シュレディンガー方程式ソリトン。こういうやつらだ。

マジで薄皮を剥くようなレベルしか理解が進まない。

  

1900年前後物理数学、このあたりで一気にレベルが上がる。アインシュタインあたりね。ネーター定理とかの保存量とかが出てくるあたりがヤバイポアソンカッコがヤバイ数学物理抽象度を上げて一気に交じりだす。

  

1960年前後数学となると、そっから更に難易度が上がる。レーザーとかが出来たせい(レーザーの光は量子力学理屈からできた)で、実験系と理論系が相互に影響あたえあってるのがあるらしい(ちなみに、大抵の場合実験系が圧勝らしい)。

実験系の話も、ギリギリ分かる程度だけど、理論系は鬼のように難しい。

  

ヤバイだろ。現代の人たちってどのレベルにいるんだろ。数学は流石にそんなにゴリゴリ進まないと思うけど(数学の年表みると、数年間隔は保っている)。理論物理はヤバそう。なんたって、実験系の物理レベルがいまだに毎年レベルが上がり続けている。レンズとか光(レーザー改善とか)とかがレベルアップし続けているから、新しい観測ドンドンまれている(ノーベル物理学賞は光系の実験系やMRI系の波動への授与がかなり多い)。

  

いわゆる数学で食っている人も、「数学小説と違うから、1日1ページでも理解できたらいい」とかそういう感じらしい。

どんだけ頭よくても、「記述意味が分からない」時というのはあるらしい。

  

こんな事あるのかな。かなりビックリしている。

悔しい。

Permalink |記事への反応(1) | 16:36

このエントリーをはてなブックマークに追加ツイートシェア

2018-10-10

物理科 素粒子分野の業績事情

人文系の文献の取り扱いとか業績についてちょっとだけ - dlitの殴り書き

こちらの記事賛同したので続いてみます

かに異分野の事情をお互いにわかっていたほうがみんな幸せになりますよね。パーマネントや学振採用とか。

はじめに

素粒子分野は大きく分けて

に分かれています。これらの間には超えられない壁がありまして全てをまとめるのはちょっと難しいのですがなんとか書いてみます

間違いを見つけたら教えてください。

論文事情

素粒子論文は全て英語で書かれます国内雑誌としてはPTEP(旧PTP)がありますこちらも英文です。当然どれも査読があります

業績リスト論文査読なし)には国際会議研究会の proceeding を載せたりします。

素粒子分野には論文投稿前にarXiv に載せる慣習があります

これは投稿前に業界の人たちに意見をもらい論文修正するためです。accept 後に査読済みの論文差し替えます

arXiv に載っているのは基本的投稿前/査読中/査読済み の論文及び国際会議の proceeding です。

素粒子査読をしないというのは誤解です。

論文雑誌とIF

特に素晴らしい研究Physical Review Letters (Phys. Rev. Lett) に投稿されます。IF8.839 です。

Nature や Science に投稿することはまずありません。

IFの基準業界によりかなり異なるでしょう。

おそらくは  [業界の人数 ] x [ 1年間に発表する論文数 ] に依存するはずです。まあ人数の少ない分野は引用数も少なくなるでしょうね。

同じ素粒子業界でもその専門ごとにかなり違うはずですが、とりあえずInspires によると以下のように分類されています

# of citations
Renowned papers 500+
Famous papers250-499
Very well-known papers100-249
Well-known papers50-99
Known papers10-49
Less known papers1-9
Unknown papers0

自分確認したい人は Inspires でfin a s Masukawa などと打ってみてください。

業界事情

素粒子実験論文を出せない

素粒子実験特にエネルギー方面ではなかなか論文が出せないことがあります

理由簡単実験計画から結果が出るまで多数の歳月がかかるからです。

例えばLHC計画からヒッグス発見まで20年弱かかりました。論文の著者数は5000人を超えました。

このような事情なので「博士課程単位取得満期退学後に研究を続けて論文を出すと同時に博士を得る」というような方がたまにいらっしゃいます

博士号をもっていない素粒子実験の人に出会っても決してバカにしてはいけません。

彼らは博士号取得と同時にノーベル賞を得る人たちなのです。

素粒子理論学生論文を出せない

素粒子理論研究に入る前の勉強量が膨大です。

まず 場の量子論超対称性理論群論リー代数 あたりは三分野共通勉強すると思います

加えてそれぞれの分野の専門的教科書、例えば弦理論ならStringTheory (Polchinski) 格子なら Lattice GaugeTheories (Rothe) など。

分野によっては位相幾何学微分幾何学勉強しなければなりません。共形場理論もですね。

この辺りでようやく基礎ができてきましてこのあと30年分くらいの論文を読みます

研究に入るまでの勉強時間がかかるので修論レビューになることが多いです。

当然学振は出せない・・はずだったのですが最近どうも事情が変わってきたようです。

学生の方が学振(DC1)に固執して勉強も途中に研究を始めてしまう、勉強途中のM1研究できることなんてたかが知れているので

必然的にあまり重要ではない研究に貴重な時間を費やしてしまう、というような話をぼちぼち聞くようになりました。

学振についての考え方は人によるとは思うのですが、ちょっと危うい傾向だなと私は思うことがあります

そこでちょっとお願いなのですが

学振研究者の登竜門!取れなかったらやめよう!」などとblogに書いて煽るのをやめていただけないでしょうか?

いや書いてもいいのですが主語を書いてください。「情報系では」「生物では」とかね。

理論博士号を取れない

博士号は足の裏のご飯粒」と言われて久しいですが、弦理論では博士号を取るのはまだまだ難しいと思います

まあとったところで「足の裏のご飯粒」なんですけれどもね・・・

追記

放置していてすみませんまさか今頃上がるとは思っていませんでした。

いただいた重要コメントこちらにも転載しておきます

new3 言いたいことはわかるけど、普通は「ヒッグス発見」を博論テーマにせずもうちょっと控え目な研究に留めるものでは?日本でもJ-PARCからSuper-Kにニュートリノ撃てるんだし10年に1本はさすがに少ないと思う。

どうもありがとうございます文章を少し修正いたしました。他にも間違ったところがありましたら教えてください。

niaoz 懐かしい。補足するとストリングやるなら一般相対論ベース重力理論必要/場の理論は確かに簡単じゃないけど楽しい量子力学特殊相対論(電磁気学含む)を修めたらやってみるとよいです。



kirarichang学振出せないと思われるのは,(学振の)制度不備だよなぁ.

monopole素粒子理論分野では修士論文書きにくいけどDC1の枠はあるので、採用者は実績によらずほぼランダムだったり有名研究室に偏ったりする。まあ論文なしでも通る可能性あるから学振気合い入れて書け

えっ!!論文なしでも通ることあるのですか!

Ho-oTo 今時の素粒子理論院生DC1用に1本は書いてるイメージが強い。

最近は大変ですよね。指導している方もすごいと思います

kowa素粒子系は知性の墓場だと感じてる。優秀な人材があまりに何もできなくて、消えている。魅力はわかるが、1/5000のcontributionだかでいいのだろうか

猫も杓子も素粒子目指しすぎですよね。宇宙論も。

Permalink |記事への反応(8) | 12:28

このエントリーをはてなブックマークに追加ツイートシェア

2015-01-19

http://anond.hatelabo.jp/20150119214711

おっしじゃあ例外リー代数が5種類しか無いことを示してその次元を全て与えてもらおうか

Permalink |記事への反応(1) | 21:55

このエントリーをはてなブックマークに追加ツイートシェア

2014-07-23

http://anond.hatelabo.jp/20140723094934

こういうこと言うプログラマー()に「CGやるからお教えてくれってお前が言うこの3次元回転群のリー代数の式変形だけど見積もりはこれくらいな。俺がこれまで勉強に費やした時間の分も含めてるから」って言ったらブチ切れそう(笑)

Permalink |記事への反応(1) | 09:58

このエントリーをはてなブックマークに追加ツイートシェア

2014-01-31

http://anond.hatelabo.jp/20140131102821

きみ数学あんま使ってないんでしょ。

可換性の話をするとき普通は交換子[a,b]=ab-baを導入するが、

それに対するある種の双対として反交換子{a,b}=ab+ba自然に入る。

別に反交換関係{a,b}=0が成り立つものを可換であるとして議論してもいいわけ

そういう発想からすると普通非可換の典型的な例として外積はでてこない。

今の話の本質は非可換性であってベクトルではない。

そもそも ベクター行列も 近いじゃねーか。 行列使わずにどうやってベクトル扱うんだよ。

ちょっと何を言いたいのか理解できない。

別にベクトル行列も単なる代数構造であって本質記法ではなくその上に定義された演算ルールだよ。

リー代数行列の形で書けるけどベクトル(ベクトル空間の元)だよ。

Permalink |記事への反応(1) | 10:35

このエントリーをはてなブックマークに追加ツイートシェア

2013-11-20

http://anond.hatelabo.jp/20131120114753

学術的には大問題に決まってるよ。

実数に対してアーベル群の構造を入れて議論するのかそうでないのか、という話なので、それによって全く別物の構造になるよ。

もちろん現実(の物理)を良く説明するのはアーベル群の方だよ。

非可換が重要意味を持つ物理というのもあって、一番有名なのは量子力学の交換関係[x,p]:=xp-px=ih_barというもので、これはリー代数と呼ばれる代数構造対応しているよ。

まり量子力学世界では非可換なリー代数構造物理をよく説明するわけで、ここでは可換な代数構造全然役に立たない。

可換な構造を利用するか、非可換な構造を利用するかは状況によって完全に決まるものであって、文科省だか何だかが自由に決めていいものではないよ。

Permalink |記事への反応(1) | 11:57

このエントリーをはてなブックマークに追加ツイートシェア

 
ログインユーザー登録
ようこそ ゲスト さん
Copyright (C) 2001-2025 hatena. All Rights Reserved.

[8]ページ先頭

©2009-2025 Movatter.jp