
はてなキーワード:ペアノの公理とは
この質問は、定義の無限後退という問題に関連しています。数理論理学では、この問題を解決するためにいくつかの方法や考え方があります。
数理論理学(特に公理的集合論や形式体系)では、すべての概念を定義しようとすると無限後退に陥るため、いくつかの基本的な概念を無定義、すなわち「原始概念」として受け入れます。
これらの概念はそれ以上定義されず、公理によってその性質が規定されます。
例えば、ユークリッド幾何学における「点」「線」「平面」などがこれに当たります。
これらは定義されず、公理(例:「異なる二点を通る直線はただ一つ存在する」)によってその関係や振る舞いが規定されます。
数理論理学の文脈では、例えば「集合」「要素」「論理結合子(AND, OR, NOT)」などが原始概念とされることがあります。
原始概念は、直接的な定義ではなく、公理によってその意味や性質が与えられます。
公理とは、その体系内で真であると仮定される基本的な命題です。
これらの公理を通して、原始概念間の関係や、それらから構築される概念の性質が暗黙的に定義されます。
自然数「0」、後者関数「S(x)」を原始概念として、以下の公理を設定します。
4.任意の自然数 x, y に対して、S(x) = S(y) ならば x = yである。
5.任意の集合 K について、0 ∈ K かつ「任意の自然数 x に対して x ∈ K ならば S(x) ∈ K」が成り立つならば、すべての自然数は K に属する。(数学的帰納法の原理)
これらの公理によって、「自然数」「0」「後者関数」という概念が間接的に、しかし厳密に定義されます。
厳密な形式体系においては、循環定義や無限後退を避けるために、定義の階層を明確にすることが重要です。
現代の数理論理学、特に集合論では、ツェルメロ=フレンケル集合論(ZFC)などの公理系が、数学のほとんどすべての概念を基礎づけるものとして広く受け入れられています。
ZFCは、「集合」という原始概念と、いくつかの公理(外延性公理、空集合公理、対の公理、和集合公理、冪集合公理、無限公理、置換公理、基礎の公理、選択公理)から構成されます。
これらの公理によって、数学的対象(数、関数、関係など)がすべて集合として構成され、その性質が集合論の枠組みの中で厳密に記述されます。
「X1とは?」「X2とは?」といった定義の無限後退は、数理論理学においては、最終的に原始概念に到達し、それらの概念は公理によってその性質が規定されることで解決されます。
つまり、すべての概念を定義し尽くすのではなく、一部の基本的な概念を無定義として受け入れ、その関係性を公理によって厳密に定めることで、論理体系全体の基礎を築いています。
俺はね、やっぱり哲学も純粋数学も役に立たねぇなって思っちまうんだよな。
だが、その瞬間、パラドクスに陥る。この思考自体が哲学的命題であり、その論理構造は数学的基盤に依拠している。
クソッ、頭の中で超弦理論とカラビ・ヤウ多様体が交錯し始めやがった。
11次元の時空間で、プランク長のスケールでの量子重力効果を考慮すると、存在そのものが確率的な様相を呈し、ハイゼンベルクの不確定性原理が存在論にまで拡張される。
昨日なんざ、スーパーでリンゴ買ってて、突如としてペアノの公理系からZFC集合論に至る数学基礎論の系譜が脳裏に浮かんだ。
そして、ゲーデルの不完全性定理とコーエンの強制法を経て、continuum hypothesisの独立性にまで思考が飛躍。
これって、日常的現実と数学的抽象の境界の曖昧さを示唆してんじゃねぇのか?
帰り道、ガキどもがニーチェの永劫回帰について議論してんの聞こえてきて、思わず「お前ら、ウィトゲンシュタインの『論理哲学論考』読んだか?言語の限界が世界の限界だぞ!」って叫んじまった。
だが同時に、後期ウィトゲンシュタインの言語ゲーム理論も考慮に入れねぇとな。
あぁ、またフッサールの現象学的還元とハイデガーの存在論的差異の狭間で思考が揺れ動いてきやがる。
哲学者どもは、こんな認識論的アポリアの中でメシ食ってんのか。
数学者連中だって、ラングランズ・プログラムの壮大な構想の中で、数論幾何と保型形式の深遠な関係に魅了されてるんだろうな。
正直、俺もそんな純粋知性の探求に身を捧げられる連中が羨ましい。
日々の下らねぇ現実に囚われてりゃ、位相幾何学におけるポアンカレ予想の証明やら、P≠NP問題の解決なんて夢のまた夢だからよ。
ったく、人生ってのは、まるでリーマンゼータ関数の非自明な零点の分布みてぇだな。
複雑で、規則性を秘めてそうで捉えどころがねぇ。
でも、その美しさと深遠さに魅了されずにはいられねぇ。
くそっ、また「PrincipiaMathematica」と「存在と時間」を同時に読み返したくなってきやがった。
「妄信」とかじゃなくて、そもそも普通の人間にとっては物事の判断基準は「信じる」か「信じない」かしか無いんだよ。
「検証する」とか「少なくとも部分的に正しそうだとみなす」とかいう複雑なことはやらない。科学に限らず、ありとあらゆるもの全てについてだ。
ちなみに科学の訓練を受けた人間も何レイヤーか遡れば同じだからな。
お前だって1+1が2であるということをペアノの公理系に立ち戻って納得したりしてねーだろ。
そういうものとして受け入れて「信じてる」だけだろ。
そのレイヤーが違うだけなんだよ。
1+1=2なのはなぜかという問いと、一個のあるものにもう一個あるものが手に入ってそれを合わせたら2個になるのはなぜかという問いは似て非なるだと思う。
前者はペアノの公理なり群論なりからなかば定義にみたいにそうだからそうなんだと説明できる。
だが後者はそういう目で見たり手に取ってみれる直観的現象としてなぜそうなるのかという話だ。しかもどんなに巨大な個数あっても同様なことが成り立つわけだ。
しかもこれ、微積分とかの何らかの計算がなぜ成り立つのかというのと問うのはまだ掘り下げてその仕組みを理解することが意義深いものでありうる感じるの違って、やはり問うまでもでもなく当たり前のことでしかないのではないかとも感じてしまう。
しかしそうやって連立方程式がなぜ代入法で解けるのかについて理解することについては素通りして当たり前に成り立つに決まってるとして活用してたのが、実は自明でもなんでもなく理解すべきロジックがきちんとあってそれに対して当たり前と言う言葉に目を曇らせていた事実もあったから、今回その可能性があるのではないかといわゆるジレンマに陥っている。
1+1=2のような足し算しょせんそういう直観的現象に対して辻褄があるように取り決められた演算にすぎない。あくまで直観的現象が先にあってその現象が予想できるように自然数の公理なりが定義されているわけだ。
あるいは5個あったところに1個追加された全体は3人で余りなく分けられるのはなぜかというのも似たような問いだ。6÷2=3だからだというのはその説明になっていない。
実際にそうなることの計算による推論の仕方を言ってるのではなく、なぜそうなるかと聞いてるわけだ。
人間の個数に関する認識が数学の構造にうまい具合に従っているから、認識と数学の集合が同型(雰囲気で言ってる)だから、みたいなことだろうか?数学基礎論を齧ってみたがいまいちこの問いと結びついているようであまり有用な感じもしない。なんかスマートな説明ないか。