
はてなキーワード:ブラウアーとは
超弦理論と抽象数学の接点は、単なる「物理のための数学」ではなく、圏論・代数幾何・表現論・ホモトピー理論を含む現代数学の中核構造を再編成する研究領域として定着しつつある。
とりわけ、DブレーンやB場(B-field)の存在を前提とする状況では、背景時空は単純な多様体ではなく、層・導来圏・非可換代数幾何の言語で記述される対象として現れる。例えば、B場によるtwistingは、層の圏をtwisted sheaves や Azumaya algebra の圏へと移行させ、幾何を Brauer class(ブラウアー類)で特徴づけられる非自明な位相的データに結びつける。
この方向性はConnes流の非可換幾何とも部分的に接続するが、弦理論側で現れる非可換性は deformation quantization や derived algebraic geometry、さらにはA∞圏・dg圏を通じて表現されることが多く、単一の枠組みに還元されるわけではない。従って「量子空間をC*-圏として扱う」という表現は一部の文脈では成立するものの、一般には derived category や ∞-category の枠組みの方が自然である。
共形場理論(CFT)と超対称性は、頂点作用素代数(vertex operator algebra)、因子化代数(factorization algebra)、テンソル圏の理論と深く絡み合い、弦理論の「状態空間」を表現論的対象として再定式化する。BRST形式主義はこの文脈でコホモロジーとして自然に理解され、物理的なゲージ冗長性の除去が、ホモロジー代数的構造(複体・導来関手・スペクトル系列)の言語へと翻訳される。これにより、CFTやトポロジカル場の理論は単なる解析的モデルではなく、圏論的データ(モジュラー・テンソル圏、A∞構造、拡張TQFT)として分類される対象となる。
代数幾何学とのインターフェースとしては、ミラー対称性が依然として中心的である。SYZ予想(Strominger–Yau–Zaslow)は、カラビ–ヤウ多様体が special Lagrangian torus fibration を持つという幾何学的仮説を通じて、ミラー多様体を双対トーラスファイブレーションとして構成することを目指す。この構想は、特別ラグランジュ部分多様体の存在・特異ファイバーの構造・補正項(instanton corrections)を含む困難な解析問題と不可分であり、単なる幾何学的直観に留まらず、トロピカル幾何や壁越え現象(wall-crossing)とも結びつきながら発展している。
さらにKontsevichによるホモロジカル・ミラー対称性(HomologicalMirror Symmetry,HMS)は、物理的双対性を「導来圏の同値」として精密化し、A-model側のFukaya圏とB-model側の導来圏(coherent sheaves の derived category)の対応を主張する。ここでは「空間」そのものよりも「圏」が基本対象となり、弦理論の双対性が圏論的同値として定式化される。
弦理論由来の代数幾何学的発展としては、Gromov–Witten不変量、Donaldson–Thomas不変量、Pandharipande–Thomas理論などの曲線カウント理論が挙げられる。これらはトポロジカル弦理論における振幅計算と深く関係し、BPS状態数え上げを幾何学的に実現する枠組みとして理解されている。特に壁越え公式や安定性条件(Bridgeland stability condition)は、BPSスペクトルの跳躍と整合的に対応し、物理的直観を圏論的・ホモロジー代数的に翻訳する。
例えばFeyzbakhshらによる研究は、K3面などの代数曲面上での安定層の構造を精密化し、導来圏上の安定性条件を通じてDonaldson–Thomas型不変量や関連する曲線カウントを制御する方向性を与えている。これは、BPS状態の数学的モデル化を洗練させると同時に、層の変形理論と双対性の圏論的理解を深化させる。
これらの進展は、AdS/CFT対応やホログラフィー原理と結びつくことで、量子重力を「幾何」ではなく「圏」や「代数的データ」によって記述する方向性を強めている。特に、境界CFTのデータからバルク重力理論を再構成するという発想は、演算子環・テンソル圏・高次圏の言語を介した再定式化を誘発しており、物理と数学の間で「双対性=圏論的同値」という理解がますます支配的になりつつある。