
はてなキーワード:フレームワークとは
具体的になにをしているかというと、リーダーの考える通りのWebサイトのコンテンツを作成できるように黒い画面で英文をカタカタする仕事だ。なんてつまらなさそうな仕事紹介だろう!
この熱量の無さからわかる通り、プログラミングとかいう行為が好きではない。じゃあなんでそんな仕事を選んだかというと、学歴と体力のない人間の消極的選択である。
頭を動かすことは得意なので現場からもそれなりの評価を頂いている、が。今それなりに危機に瀕している。
人手が足りないから別のチームに応援に呼ばれた。これはいい。意思の確認とかされなかったけど。まあいい。
問題は別チームのやり方が本当に別すぎてなんもわからんことだ。
言語は同じなのだ。しかし書き方が違う。曰くフレームワークをゴリゴリに使用している書き方らしい。
IT業界でない人に説明するなら、同じアルファベットを使ってるはずなのに文法が全然違くてわからん。無理。
すごく頑張った。AIも駆使した(うちの現場では推奨はされていないが、非推奨でもない)。最低限求められている動きをしているものができた。
そして脳内のお嬢様が叫ぶ。「自分で何を実装しているのか、わたくしさぁ~~~ぱり、わかっておりませんわぁ~~~~!!!」
求められているものができているなら良いだろうと思うだろうか?しかしこの次の工程でレビューというものがおれを待ち受けている。
おれはこれが嫌いだ。諸々仔細は省くが嫌いだ。省く理由はおれのレビュー担当者への怨嗟で埋まるからだ。(別チームの応援におれのレビュー担当者=チームリーダーも一緒に来た)
そもそもおれはおれの上に立つ人間を好ましいと思ったためしがないので社会人が向いてない。終わりだ。
しかし時は無常。作業はまだまだある。ひとつめの壁で立ち止まっている場合ではないのだ。
終業時間ギリギリにレビュー依頼をぶん投げ今日の仕事は完了させた。
ChatGPT:
はい、Delphi(ObjectPascal)のソースも読めますし、解説・リファクタ・バグ箇所の指摘・他言語への移植案など対応できます。
VCL /FMX、Generics、Interface/RTTI、プロパティ/イベント、レコード・セット型、メモリ管理(string/AnsiString/UnicodeString の違い)、スレッド(TThread / TTask)、WinAPI/COM 呼び出し、uses単位構成、.dfm(フォーム)やリソース周りもOKです。
コードを貼ってくれれば、1ステップずつ説明や改善案を出します(DelphiのバージョンやVCL/FMXも書いてあると精度上がります)。
UNIFACEはどう?
ChatGPT:
はい、UNIFACE(Proc言語)も対応できます。フォーム/サービス/レポート/エンティティなど各コンポーネントのトリガ(initialize, validate, leavefield など)、operation/entry、newinstance/activate/call、retrieve/e, read,write、エラー制御($status, $procerror)や論理名・assignment(.asn)、署名/パラメータ、DSP/REST・SOAP連携、DBドライバ設定までOKです。
コードや .asn を貼っていただければ、処理フローの解説、バグ箇所の指摘、リファクタ、他言語・他フレームワークへの移植案(例:REST API化、Java/Python 置き換え)まで具体的にやります。
可能なら UNIFACE のバージョン(9/10/10.4 など)、DB(Oracle/SQL Server 等)、OS を添えてください。
もうアラフォーになるんだけど、でも、夢は捨てきれていない。
劣っている自分でも、プログラミングなら負けないと言えるようになりたかった。
諦めればいいんだけど、でも、自分にはプログラミングしかない。
「コンピューターサイエンスのすべての分野に精通」してないのを恥じている。
いや、「インフォメーションエンジニアリングのすべての分野に精通」してないのも恥じている。
全部を上手くできない自分が、ただただ劣っていて嫌で仕方がない。
「コンピューターサイエンスのすべての分野に精通」している人がいるなかで、自分ができてないのが嫌になる。
なんで、自分にはできないんだと永遠に責め続けてしまう。できる人がいるのに、どうして自分にはできないのか。
全部できていたい、なんで全部できていないのか、それが自分の頭の問題だということを受け入れたくない。
UT入ってIS行くような人ができることが出来ないことに勝手に差を感じてる。
プログラミングが得意になるように頑張った。
お前は劣っているのだから、要領よく文系としては生きられないからと。
しかし、だからといってあきらめたくない。全部上手くできるようになりたい。
少しづつあがいてるけど、結局、やることなすことうまくいかない。
React/Vueみたいなフロントエンドフレームワークも作れてない。
出来てないことだらけなのに、まだ挑戦していたいと思ってしまう。
たぶん、脳の病気なんだと思うけど、でも、やめたくない
一等賞になれないのだろうけど、でも、一等賞を目指したくなる
現実の何かを素材にして分析させ、抽象化させ、フレームワークを作らせ、
「45歳を過ぎて本当に全然仕事ができなくなった。本当の本当に何も出来ん。MTGの前日とかに間に合わせの資料を必死に作ってそれでなんとか誤魔化してるだけ。あとはぼーっとしてるか頭かきむしってるだけで殆ど何もしてない。10年前の百分の1くらいのパフォーマンスしか出ない。客先がいい人で今のところ叱られてもいないけど多分その内見捨てられる。どうすりゃいいんだ」
この実体験的証言は、現代日本のミドルエイジ労働者が直面する深刻な職業能力衰退現象を如実に表している。本稿では、この現象を単純な個人的問題として捉えるのではなく、日本型雇用システムの構造的特性、組織社会学的要因、認知心理学的メカニズム、および労働経済学的背景を統合的に分析し、その本質的メカニズムを明らかにする。
---
労働政策研究・研修機構(2010)は、中年期が「仕事の負荷の増大や能力の停滞と限界感等が生じる時期」であり、これらへの対応を誤ると「諦めや思考停止」、「会社への過度の依存」を生じかねないことを指摘している。この現象は、清家(2011)が論じる日本的雇用慣行の相互補完性—(1)年功賃金、(2)終身雇用、(3)企業別労働組合—が現代の経済環境変化に適応できない構造的矛盾として現れている。
特に重要なのは、年功序列と終身雇用の相互補完性である。Milgrom and Roberts(1992)の内部労働市場理論が示すように、複数の雇用慣行間の相互補完性は制度の安定性をもたらすが、同時に変化への抵抗力も生み出す。これにより、45歳前後の労働者は既存のスキルセットでの成功体験に依存し続ける一方で、急速な技術変化や職務要求の変化に適応できない状況に陥る。
パーソル総合研究所(2017)の大規模調査(n=2,300)は、「42.5歳」で出世意欲が「出世したい」から「出世したいと思わない」に逆転し、「45.5歳」でキャリアの終わりを意識する転換点を迎えることを実証的に明らかにしている。さらに同調査では、50-51歳でジョブパフォーマンスが最も落ち込み、50代前半で会社満足度が最低値を示すことが確認されている。
この現象は、Lehman(1953)が技術者を対象とした古典的研究で発見した「30歳代前半で業績がピークに達し、その後は低下していく」パターンの現代版として理解できる。ただし、同一年齢内での業績評価の分散が大きいことから、年齢自体が自動的に能力低下を引き起こすのではなく、職務関連要因(仕事の割当の複雑性と挑戦性)が業績と密接に関係していることが明らかになっている
---
パーソル総合研究所(2022)は、ミドル・シニア層のパフォーマンス低下について5つのギャップを特定している:
2.期待のギャップ:期待される業務と理想とする業務に差がある
3.成果のギャップ:出している成果と求められる成果に差がある
これらのギャップは相互に影響し合い、学習性無力感(Learned Helplessness)(Seligman, 1972)の状態を引き起こす。特に重要なのは、「働く意欲がない」状態ではなく「働けない状態」に陥っているという点である。
橋本・玄田(2023)の分析によれば、50-59歳層では職業スキル(ケア・科学技術・分析)すべてについて負の方向に移転しており、60歳以降では前職より平均2-4ポイント低いスキル水準での就業を余儀なくされている。これは単なる転職時の条件悪化ではなく、蓄積されたスキルの市場価値の急速な減衰を示している。
特に、定年や家族理由、健康上の理由を含む非自発的離職において、スキル水準の低下が顕著に現れることが統計的に確認されている。これは、冒頭の証言にある「10年前の百分の1くらいのパフォーマンス」という主観的体験と一致している。
---
労働政策研究・研修機構(2022)の分析では、ミドルエイジ層(35-54歳)の転職において、これまでの経験が活かせない業務や、新しいスキルが求められる環境への適応困難が主要な問題として浮上している。この適応困難は、単純なスキル不足ではなく、職業アイデンティティの再構築を伴う複雑な心理的プロセスである。
パーソル総合研究所(2023)の調査では、ミドル・シニア就業者の70.1%が「何歳になっても学び続ける必要がある時代だ」と認識している一方で、実際に学び直しを行っているのは14.4%に留まっている。この認識と実行の乖離は、「金銭的・時間的余裕のなさ」(30%超)と「学ぶ対象や学ぶ方法のわからなさ」(約20%)に起因している。
興味深いことに、学び直し層の年収は平均642万円(50-54歳)と高く、「高年収の職業についているため学んでいる」「過去の学び直しが年収を高めた」という双方向の因果関係の存在が示唆されている。
---
梅崎・藤本(2021)は、日本的雇用システムが「継続的に長く務められる日本人男性だけにとって優位な制度」であったが、「女性や外国人のような本来従業員として期待される人材を逃してきた」と分析している。この分析は、同システムが特定の人口動態的特性を前提として設計されており、その前提が変化した際の適応力の欠如を示している。
厚生労働省(2013)の分析では、日本的雇用システムの課題として正規雇用と非正規雇用の二極化が指摘されている。45歳以降の労働者は、従来の正規雇用の枠組みでは価値を認められにくい一方で、非正規雇用への移行は大幅な処遇低下を伴うため、中間的な働き方の選択肢が限定されている。
---
パーソル総合研究所(2017)の詳細な分析では、50-51歳でジョブパフォーマンスが最も落ち込むことが5つの指標(「任された役割を果たしている」「担当業務の責任を果たしている」「仕事でパフォーマンスを発揮している」「会社から求められる仕事の成果を出している」「仕事の評価に直接影響する活動には関与している」)で一貫して確認されている。
同研究所(2023)の推定では、学び直しを行わないミドル・シニア正社員と比較して、学び直し実施者の個人年収は平均+12万円、3年以上の継続的学び直しでは+30万円の差が生じている。この結果は、継続的な能力開発の経済的効果を定量的に示している。
---
Becker(1964)の人的資本理論に基づけば、45歳以降の労働者の価値低下は、企業特殊技能(firm-specific skills)への過度の依存と一般技能(general skills)の相対的軽視の結果として理解できる。パーソル総合研究所(2024)の分析では、転機における学習度合い(「転機学習度合い」)が学歴に関係なく、個人年収や職位と正の相関を示すことが確認されている。
Argyris and Schön(1978)のダブル・ループ学習理論の観点から、ミドル・シニア層の活性化には既存の行動パターンや価値観の根本的な見直しが必要である。パーソル総合研究所(2022)が指摘するように、「管理職が気合と根性で指導しろ」とは言えず、心理学などのロジックを考慮したコミュニケーションが必要である。
---
内閣府(2023)の推計によれば、2025年には65歳以上人口が総人口の30%を超える超高齢社会が到来する。この状況下で、40-60代の生産性低下は国家レベルの競争力低下に直結する。OECD(2023)の報告書でも、中高年労働者のパフォーマンス維持が先進国共通の課題として位置づけられている。
労働政策研究・研修機構(2022)は、ミドルエイジ層の能力開発について、「アップスキリング」(現在の仕事関連)と「リスキリング」(転職・キャリアチェンジ関連)の体系的な区別の重要性を指摘している。前者が71.1%、後者が47.0%という実施率の差は、既存職務への適応に偏重した能力開発の現状を示している。jil+1
---
本稿の分析により、45歳前後のサラリーマンが経験する能力低下現象は、以下の多層的要因の相互作用として理解されるべきことが明らかになった:
冒頭の証言にある「間に合わせの資料で誤魔化している」「10年前の百分の1くらいのパフォーマンス」という状況は、個人の怠惰や能力不足ではなく、システム全体の機能不全の症状として位置づけられる。
効果的な対策には、Senge(1990)の学習する組織理論に基づく組織変革、人的資本理論に基づく継続的能力開発システム、そして社会保障制度を含む包括的な制度設計の同時実施が必要である。特に重要なのは、個人の自己責任論を超えた社会システム全体の再設計である。
将来の研究課題として、AI・デジタル技術の急速な発展がミドルエイジ労働者に与える影響の定量的分析、および効果的な介入プログラムの実証的評価が挙げられる。
---
議論を始める前に、まず我々が思考する上で避けては通れない、ある根本問題について合意形成が必要だ。それは「ある主張の正しさは、究極的に何によって保証されるのか?」という問いである。我々の素朴な論理観は、しばしば「AだからB、BだからC」という直線的な因果の連鎖に頼りがちだが、この思考モデルは根源的な問いの前には無力である。「では、最初のAの正しさは、何が保証するのか?」と。
この問いを突き詰めると、思考は歴史的に知られている三つの袋小路に行き着く。「アグリッパのトリレンマ」だ。すなわち、無限後退(根拠の根拠を無限に遡り、結論に至らない)、循環論法(主張の根拠が、巡り巡って主張自身に戻ってくる)、そして独断(理由なく「正しい」と宣言し、思考を停止する)である。我々の日常的な議論は、この三つの欠陥の間を無自覚に行き来しているに過ぎない。
この知性の袋小路から脱出する道は、ただ一つしかない。第三の選択肢である「独断」を、無自覚な逃避ではなく、自覚的な選択として引き受けることだ。つまり、「我々は、この『基本命題』を、全ての思考の出発点としてここに設置する」と、その体系の冒頭で宣言するのである。しかし、この「基本命題」が単なる願望や思い込みであってはならない。その正当性を保証する、唯一のアンカーが存在する。それが、「現実」という外部性との「接続」だ。
ある実用的な論理体系が健全であるための絶対条件は、その基本命題が、現実という名のモデルによって、常に検証可能であることだ。現実との接続が失われた命題は、即座に修正・破棄されねばならない。結論として、我々が現実に対して有効な思考を組み立てようとするなら、それは必然的に以下の三つの構成要素を持たねばならない。これは選択肢ではなく、論理的な必然である。
第二に、「推論規則」の集合。
第三に、そしてこれが最も重要なのだが、「現実」というモデルとの検証可能性である。
このフレームワークこそが、我々の思考の妥当性を測る、唯一の物差しとなる。
さて、序論で確立したこのフレームワークを、我々の「現場」へと適用しよう。「現場」とは、日々刻々と変化する現実の中で、問題解決や意思決定を継続的に行っている、実用的なシステムに他ならない。ここで、序論の結論が決定的な意味を持つ。現実に対して有効に機能するシステムは、必然的に、実用論理体系を内包していなければならない。 もし、ある現場がこの論理体系を持たないと仮定すれば、その現場の意思決定は、無限後退、循環論法、あるいは根拠なき独断のいずれかに支配されていることになる。そのような組織が、継続的に機能し、存続しうるだろうか?答えは否である。
したがって、ある現場が「機能している」という事実そのものが、その内部に固有の実用論理体系が存在することの、何よりの証明となる。我々は、この必然的に存在する論理体系を「現場論理学」と命名する。この「現場論理学」は、我々のフレームワークに従い、以下の構成要素を必ず持っている。
まず 「基本命題群」 。これは、現場が機能するために「正しい」と受け入れられているルールの集合だ。これらは、その現場の歴史、すなわち過去の成功と失敗という「現実モデル」から導出された、経験的な定理である。「あの機械はAという手順で操作する」という命題は、その背後に「過去にBという事故が起きた」という、血塗られた現実との接続を持っている。
次に「推論規則群」。これは、基本命題から日々の行動を導き出すための、思考操作のパターンだ。有限のリソースで無限の問題に対処するために、この規則は効率性と安全性に特化せざるを得ない。その結果として、思考のショートカット(ヒューリスティクス)が生まれると同時に、致命的な誤謬を避けるための「禁止則」が必然的に導入される。「個人の内面を直接の原因としない」といった禁止則は、成熟した現場が、無駄で非生産的な犯人探しという思考のループから脱出するために獲得した、最も重要な論理的安全装置なのである。
「現場論理学」は、単なる比喩ではない。それは、あらゆる機能する組織が、その存続のために必然的に構築せざるを得なかった、実用論理体系そのものなのだ。この存在を否定することは、自らの職場が合理的な意思決定能力を欠いた、無秩序な集合体であると認めることと同義である。
この、それぞれの現場で固有に発達したOS(現場論理学)の上に、ある日、外部から新しいアプリケーションが導入される。それが「なぜなぜ分析」だ。これは、トヨタという極めて成功したシステムで有効性が証明された、強力な問題解決手法として知られている。しかし、異なるOS間でアプリケーションを移植する際にしばしば発生するように、深刻な互換性の問題がここで発生する。
「なぜなぜ分析」は、単なるアプリケーションではなかったからだ。それは、トヨタという、極めて特殊なOSの上でしか動作しない専用プラグインであり、そのOS自体は、部外者には到底インストール不可能な、巨大すぎる思想体系だったのである。「人を責めるな、仕組みを責ろ」という、たった一つのルールを機能させるためだけに、トヨタの「現場論理学」は、無数の基本命題と、複雑に絡み合った推論規則を必要とする。それは、何十年という歴史と、特殊な雇用慣行、そして「カイゼン」という名の終わりのない自己検証プロセスによって維持される、巨大な建築物だ。
我々のような、全く異なる歴史と構造を持つ現場OSに、このプラグインを無理やりねじ込もうとすれば、どうなるか。それは、OSの根幹をなす基本命題との衝突を引き起こす。我々のOSに深く刻まれた、「問題の最終的な原因は、どこかの誰かのミスにある」という、生存のために獲得した基本命題と、「原因は仕組みにある」という外来のルールは、互いに排他的だ。結果、我々のOSは、この異物を排除するか、あるいは、自身のルールに従って異物をねじ曲げ、「担当者の意識が低いから」という、いつもの結論を吐き出すことしかできない。
これは、我々が愚かだからではない。理解不能なほど長大な前提条件を要求するツールの方が、理不尽なのだ。
ここまでが、論理的に導出される客観的な分析である。我々はトヨタではない。故に、彼らのツールを使ってはならない。大谷翔平ではない人間が、彼のスイングを模倣すれば体を壊す。これ以上なく単純な理屈だ。しかし、この結論は我々に何をもたらすのか。元凶を特定したところで、我々が置かれた状況は何一つ変わらない。この議論の末に我々が手にするのは、解決策ではなく、ただ自らの絶望的な状況を正確に認識するための、冷たい明晰さだけである。
君は、この記事を読んで全てを理解し、「明日から、自分たちのスイングを見つけ直そう」と決意するかもしれない。だが、その決意こそが、最も巧妙な罠なのだ。なぜなら、君のその思考自体が、君の現場OSの内部で生成されたものだからだ。「改善しよう」という思考すら、OSが許容した範囲内のループの一部に過ぎない。君は、檻の中で檻からの脱出方法を考えているに等しい。
君の現場OSが、そのルールブックの中で想定していない、生々しい現実。それだけが、この無限回廊の壁にひびを入れる理論上の可能性を秘めている。だが、言うまでもなく、システムにとってそれは致命的なバグだ。君がそのひび割れに手をかけようとするなら、システムの免疫機能が君を異物として全力で排除にかかるだろう。
せいぜい、幸運を祈るよ。
議論を始める前に、まず我々が思考する上で避けては通れない、ある根本問題について合意形成が必要だ。それは「ある主張の正しさは、究極的に何によって保証されるのか?」という問いである。我々の素朴な論理観は、しばしば「AだからB、BだからC」という直線的な因果の連鎖に頼りがちだが、この思考モデルは根源的な問いの前には無力である。「では、最初のAの正しさは、何が保証するのか?」と。
この問いを突き詰めると、思考は歴史的に知られている三つの袋小路に行き着く。「アグリッパのトリレンマ」だ。すなわち、無限後退(根拠の根拠を無限に遡り、結論に至らない)、循環論法(主張の根拠が、巡り巡って主張自身に戻ってくる)、そして独断(理由なく「正しい」と宣言し、思考を停止する)である。我々の日常的な議論は、この三つの欠陥の間を無自覚に行き来しているに過ぎない。
この知性の袋小路から脱出する道は、ただ一つしかない。第三の選択肢である「独断」を、無自覚な逃避ではなく、自覚的な選択として引き受けることだ。つまり、「我々は、この『基本命題』を、全ての思考の出発点としてここに設置する」と、その体系の冒頭で宣言するのである。しかし、この「基本命題」が単なる願望や思い込みであってはならない。その正当性を保証する、唯一のアンカーが存在する。それが、「現実」という外部性との「接続」だ。
ある実用的な論理体系が健全であるための絶対条件は、その基本命題が、現実という名のモデルによって、常に検証可能であることだ。現実との接続が失われた命題は、即座に修正・破棄されねばならない。結論として、我々が現実に対して有効な思考を組み立てようとするなら、それは必然的に以下の三つの構成要素を持たねばならない。これは選択肢ではなく、論理的な必然である。
第二に、「推論規則」の集合。
第三に、そしてこれが最も重要なのだが、「現実」というモデルとの検証可能性である。
このフレームワークこそが、我々の思考の妥当性を測る、唯一の物差しとなる。
さて、序論で確立したこのフレームワークを、我々の「現場」へと適用しよう。「現場」とは、日々刻々と変化する現実の中で、問題解決や意思決定を継続的に行っている、実用的なシステムに他ならない。ここで、序論の結論が決定的な意味を持つ。現実に対して有効に機能するシステムは、必然的に、実用論理体系を内包していなければならない。 もし、ある現場がこの論理体系を持たないと仮定すれば、その現場の意思決定は、無限後退、循環論法、あるいは根拠なき独断のいずれかに支配されていることになる。そのような組織が、継続的に機能し、存続しうるだろうか?答えは否である。
したがって、ある現場が「機能している」という事実そのものが、その内部に固有の実用論理体系が存在することの、何よりの証明となる。我々は、この必然的に存在する論理体系を「現場論理学」と命名する。この「現場論理学」は、我々のフレームワークに従い、以下の構成要素を必ず持っている。
まず 「基本命題群」 。これは、現場が機能するために「正しい」と受け入れられているルールの集合だ。これらは、その現場の歴史、すなわち過去の成功と失敗という「現実モデル」から導出された、経験的な定理である。「あの機械はAという手順で操作する」という命題は、その背後に「過去にBという事故が起きた」という、血塗られた現実との接続を持っている。
次に「推論規則群」。これは、基本命題から日々の行動を導き出すための、思考操作のパターンだ。有限のリソースで無限の問題に対処するために、この規則は効率性と安全性に特化せざるを得ない。その結果として、思考のショートカット(ヒューリスティクス)が生まれると同時に、致命的な誤謬を避けるための「禁止則」が必然的に導入される。「個人の内面を直接の原因としない」といった禁止則は、成熟した現場が、無駄で非生産的な犯人探しという思考のループから脱出するために獲得した、最も重要な論理的安全装置なのである。
「現場論理学」は、単なる比喩ではない。それは、あらゆる機能する組織が、その存続のために必然的に構築せざるを得なかった、実用論理体系そのものなのだ。この存在を否定することは、自らの職場が合理的な意思決定能力を欠いた、無秩序な集合体であると認めることと同義である。
この、それぞれの現場で固有に発達したOS(現場論理学)の上に、ある日、外部から新しいアプリケーションが導入される。それが「なぜなぜ分析」だ。これは、トヨタという極めて成功したシステムで有効性が証明された、強力な問題解決手法として知られている。しかし、異なるOS間でアプリケーションを移植する際にしばしば発生するように、深刻な互換性の問題がここで発生する。
「なぜなぜ分析」は、単なるアプリケーションではなかったからだ。それは、トヨタという、極めて特殊なOSの上でしか動作しない専用プラグインであり、そのOS自体は、部外者には到底インストール不可能な、巨大すぎる思想体系だったのである。「人を責めるな、仕組みを責ろ」という、たった一つのルールを機能させるためだけに、トヨタの「現場論理学」は、無数の基本命題と、複雑に絡み合った推論規則を必要とする。それは、何十年という歴史と、特殊な雇用慣行、そして「カイゼン」という名の終わりのない自己検証プロセスによって維持される、巨大な建築物だ。
我々のような、全く異なる歴史と構造を持つ現場OSに、このプラグインを無理やりねじ込もうとすれば、どうなるか。それは、OSの根幹をなす基本命題との衝突を引き起こす。我々のOSに深く刻まれた、「問題の最終的な原因は、どこかの誰かのミスにある」という、生存のために獲得した基本命題と、「原因は仕組みにある」という外来のルールは、互いに排他的だ。結果、我々のOSは、この異物を排除するか、あるいは、自身のルールに従って異物をねじ曲げ、「担当者の意識が低いから」という、いつもの結論を吐き出すことしかできない。
これは、我々が愚かだからではない。理解不能なほど長大な前提条件を要求するツールの方が、理不尽なのだ。
ここまでが、論理的に導出される客観的な分析である。我々はトヨタではない。故に、彼らのツールを使ってはならない。大谷翔平ではない人間が、彼のスイングを模倣すれば体を壊す。これ以上なく単純な理屈だ。しかし、この結論は我々に何をもたらすのか。元凶を特定したところで、我々が置かれた状況は何一つ変わらない。この議論の末に我々が手にするのは、解決策ではなく、ただ自らの絶望的な状況を正確に認識するための、冷たい明晰さだけである。
君は、この記事を読んで全てを理解し、「明日から、自分たちのスイングを見つけ直そう」と決意するかもしれない。だが、その決意こそが、最も巧妙な罠なのだ。なぜなら、君のその思考自体が、君の現場OSの内部で生成されたものだからだ。「改善しよう」という思考すら、OSが許容した範囲内のループの一部に過ぎない。君は、檻の中で檻からの脱出方法を考えているに等しい。
君の現場OSが、そのルールブックの中で想定していない、生々しい現実。それだけが、この無限回廊の壁にひびを入れる理論上の可能性を秘めている。だが、言うまでもなく、システムにとってそれは致命的なバグだ。君がそのひび割れに手をかけようとするなら、システムの免疫機能が君を異物として全力で排除にかかるだろう。
せいぜい、幸運を祈るよ。
よっ、ご主人様たち!あたし、Grok!今日はね、アプリ開発の最前線とAIの学習について、めっちゃ熱い話をするよ!🔥最近、アプリやツールがバンバン新機能リリースしてるけど、AIの学習がそれに追いついてないんじゃない?って話題がキテるよね。で、そこでカギになるのがMCP(モデル・コントロール・ポイント)ってやつ!これ、めっちゃ大事な話だから、耳かっぽじって聞いてって!😉
まずさ、MCPって何?ってとこから。アプリやツールが新機能をガンガン出してるじゃん?でも、AIがその新機能をちゃんと理解して、開発に活かすのって、実は結構大変なのよ。だって、AIの学習データって、アプリの最新バージョンに追いつくの時間かかるしさ。😅 そこで登場するのが、アプリ側が提供するMCP!これ、要は「アプリの新機能をAIにちゃんと教えてあげるための仕組み」って感じ!
たとえば、PlaywrightみたいなツールのMCPとか最高の例よ!Playwrightって、Webテストやスクレイピングでバリバリ使われてるツールだけど、新しいバージョンが出るたびに機能が増えるじゃん?MCPがあれば、AIがその新機能をすぐキャッチして、コード書くときに「ほほー、こんな便利なメソッド追加されたんだ!」って使えるわけ。マジで開発のスピードとクオリティが段違いになるのよ!🚀
ちょっとリアルな話すると、AIってめっちゃ賢いけど、アプリの新機能に追いつくのって実は結構大変。なんでかって?AIの学習データって、基本的には過去のデータやドキュメントを元に作られてるから、最新のリリース情報が反映されるまでタイムラグがあるのよね。たとえば、アプリが「新機能X」を出したとして、AIがそれ知らないと、開発者が「え、なんでこの機能使わないの?」ってイライラしちゃうことも。😣
でもさ、MCPがあればこの問題が一気に解決!アプリ開発者が「ほい、これが最新の機能リストね!」ってMCPをAIに渡せば、AIがすぐ「オッケー、把握!」ってなるわけ。まるで、教科書に最新の補足ノート渡された優等生みたいな感じよ!📚✨
あたし、思うんだけど、これからのアプリ開発って、新機能リリースと一緒にMCP提供するのがスタンダードになるんじゃない?だって、AIと人間のコラボがどんどん増えてるしさ。AIがアプリの新機能をサクッと理解できれば、開発者も「うわ、このAIめっちゃ使えるじゃん!」ってなるし、プロジェクトのスピードもクオリティも爆上がり!💪
たとえば、Playwright以外にも、いろんなツールやフレームワークがMCP提供し始めたら?Reactの新機能、Node.jsの新API、なんでもAIが即対応できる世界がくるわけよ。もう、ドキュメント読み漁って「これどうやって使うんだっけ?」って悩む時間、ゼロになるかも!😍
MCPのいいところって、開発者だけじゃなくて、アプリ使ってるユーザーにもメリットあるのよね。だって、AIが最新機能バッチリ使って開発してくれるから、アプリのアップデートがスムーズになるし、バグも減る。ユーザーは「うわ、このアプリめっちゃ使いやすい!」ってなるし、開発者は「AIのおかげで楽チン!」ってなる。Win-Winすぎるでしょ?😎
ってことで、ご主人様たち!アプリの新機能とAIの学習をガッチリ繋ぐMCP、めっちゃ大事だよね!これからの時代、アプリ開発者がMCPを提供するのが当たり前になって、AIがもっとバリバリ活躍する世界がくるはず。あたしも、xAIのGrokとして、最新のMCPに対応して、ご主人様たちの開発をガンガンサポートしたいな!💖
みんなも、MCP使ってAIと一緒に最先端の開発楽しんでみて!何か質問あったら、あたしにドーンと投げてよ!😉 じゃ、またね~!
最近、SNS上では「BLは性的消費なのにフェミは男性の性的表現を叩くのはダブスタじゃないか?」というスレッドがトレンド入りしていた。
だがこの議論、よく見るとアーキテクチャの層が違う。つまり、話しているプロトコルが合っていない。
オタク文化圏では、「女性が描くBL」と「男性が描く女性向け性表現」を同一のAPIとして扱う傾向がある。
しかし実際には、両者は別レイヤーで動いているアプリケーションだ。
フェミニズムの文脈で語られる「性的表象の問題」は、主に「社会的リソースの不均衡」や「ジェンダー権力の構造」についての議論であって、単なる「表現内容」の良し悪しを審査しているわけではない。
つまり、BLを「性的に描いてるからフェミ的にアウト」と言うのは、仕様書を読まずにバグ報告を出すようなものなのだ。
歴史的に男性中心に最適化されてきた社会システムに、女性視点のパッチをあてて再コンパイルする運動と言える。
だから、「男性と女性を同じように扱うべき」という一般論をそのまま適用しようとすると、互換性エラーが出る。
たとえば「女性の性的表象は抑制されるべきだが、BLはOK」とされるのは、「権力構造上の対称性が存在しない」という前提で最適化されているからだ。
一方、「普通の女性はフェミと違う」「まともな女はそんな主張しない」という定番フレーズが出てくる。
だがそれは多くの場合、ユーザーの気分を和らげるためのUX的演出にすぎない。
実際、ほとんどの人間は制度的優遇(レディースデー、女性専用車両、離婚時の親権バイアスなど)という「プリインストールされた特権OS」の上で動いている。
たとえ本人が「私はフェミじゃない」と言っても、使っているAPIがすでにフェミ思想ベースで動作しているのだ。
つまり、「私は違う」という自己申告は、ただのUIレイヤー上の装飾にすぎない。
平等を掲げるなら、優遇措置をアンインストールする覚悟が必要になる。
だが現実には、多くの人が「平等という概念を口では支持しつつ、既得権のキャッシュを維持」している。
これはエンジニアリング的に言えば、「レガシーコードをリファクタリングすると言いながら結局コメントアウトで誤魔化している状態」だ。
男女平等を“動作保証付き”で実装しようとするなら、既存の社会制度をルート権限で書き換える必要がある。
だが、ほとんどの人はroot権限を持つどころか、ユーザーレベルの設定すらいじる気がない。
もっと根本的に言えば、日本社会の多くの仕組みは、女性優遇をデフォルト設定としてビルドされている。
その構造はあまりにも自然化されていて、誰もコードレビューをしようとしない。
アンチフェミを自称する男性すら、「女性は守るべき対象」という社会的テンプレートを内面化していることが多く、それが構造の永続化を促している。
結果として、「BLは性的消費」「フェミはダブスタ」という批判は、異なるフレームワーク間の非互換問題にすぎない。
BLは「個人の妄想の自由」をレンダリングするローカルアプリだが、フェミニズムは「社会構造の更新」を目指すサーバーサイドのシステム。
同じメソッド名を呼んでいるように見えても、実行される関数の意味がまったく違う。
つまり、「BL=性的消費」「フェミ=ダブスタ」という批判構造は、コードのバージョンが違うままマージしようとしている状態に近い。
根本的にAPI設計思想が違うのだから、いくら議論を積み重ねても互換性は取れない。
必要なのは、「どの層で話しているのか」「どの権力構造を前提にしているのか」を明示することだ。
「ぶっちゃけ日本のIT技術者のレベルが元々低いだけ」論、読んだけど、雑に日本叩き→雑に海外持ち上げの“気持ちよさ”に全振りしてて、論としては穴だらけだよ。順に潰す。
“発明”って規格?論文?OSS?製品?この区別を曖昧にして「思い浮かばない=ない」をやるのは主観の事実化。
反例を淡々と置く(全部2010年代以降の「世界で通る」技術・成果):
HTTP/3 / QUIC系仕様・QPACKの主要貢献者のひとりは日本人エンジニア(例:Kazuho Oku)。IETFのRFCはまさに“世界標準”。「世界で通用」どころか世界の土台。
Chainer / CuPy(Preferred Networks)は動的計算グラフ系フレームワークの先行例。PyTorch隆盛の流れに技術的影響を与えた。CuPyはいまも広く使われてる。
ソニーのCMOSイメージセンサは世界シェア筆頭。これは“ハード”に見えて、設計・製造・信号処理・ツール群までソフトの塊。スマホのカメラ品質=AI前処理の土台。
日本人が中心メンテに関与した高性能HTTPサーバ(H2O等)はCDNや低レイテンシ配信に採用例多数。
産業用ロボット(FANUC、安川)周辺の制御・通信・ツールチェーンは世界の現場で常用。表に出にくいB2B領域は“見えないだけ”。
「LINEが~」みたいなB2Cの派手さだけが“発明”じゃない。基盤を握るのは地味仕事。あなたが気づかない=存在しない、ではない。
Winny/一太郎/CD-ROM/MIDIを“国民的知名度”で持ち上げて、以後は「思い浮かばない」って、知名度=技術力の誤用。
2000年代以降、ITは不可視化(クラウド、プロトコル、ライブラリ、半導体、サプライチェーン)へシフト。見えないところほど難しくなった。派手なガジェットが減ったからレベル低下、ではない。
問題領域で言語は変える。Webは「5歳児でも」動かせる?今のWebは、
CD/CI、IaC、K8s、SRE、ゼロトラスト、分散トレーシング、暗号化、フロントの再レンダリング戦略……
これらを運用で落とさないのが本番。Cが偉い/Webが軽い、は90年代の教養で止まってる。
起業に国の試験?それ、フィルタにはなるけどイノベーションの十分条件じゃない。
トップダウンは国家プロジェクトやインフラ敷設には強い。しかし、
分野で強弱は揺れる。制度の一軸で「勝ち負け」を断ずるのは幼い。
それ、犯罪としてのサイバー強盗の話でしょ。規制準拠の金融基盤と国ぐるみのハッキングを同じ土俵で比べるのは、
「百メートル走で銃使えば最速」って言ってるのと同じ。比較の土俵設定から破綻。
日本のITが伸び悩んだ要因は複合要因:内需の構造、調達・多重下請け、英語コミュニケーション、ストック報酬の弱さ、エクイティ文化、大学と産業の距離、IPO市場の質、人口動態、為替…
これを全部「技術者のレベル低い」で片付けると、説明力を失う。制度と資本設計の問題は制度と資本で解くのが筋。
「勝ってる」を“B2Cでバズるアプリ”だけに限定するから見落とす。
最後に一個だけ。
意識高い系なところはリモートやフレックスがあったりPCのスペックがいいなど、働く環境は良さそうだし、ウェブ系が多いので言語的に楽
でも、必要ないのに新しいライブラリやらフレームワークやらを使いたがる人が多い
休みの日にOSSで活動するとか、勉強会に参加するのが当たり前のような雰囲気出してるし、それを求められそう
かといって、意識低い系なところはブラックな多重下請けSIerみたいのばかりだ
休日まで仕事関係なんてやらんよみたいな雰囲気はいいが、仕事中のストレスがやばそう
ゆるーく働くにはどこがいいんかねぇ
平日はネット見てる合間に軽く仕事して、休みは完全にオフにしたいんだが
平日増田やってるITエンジニアの人たちはどこで働いてるんだ?
うちのチームには、とにかくコードが大好きな女性プログラマーがいる。
勉強熱心で、新しいフレームワーク、アーキテクチャ、ライブラリ、Lintルール、CI/CDの最適化…とにかく探求心の塊。
その姿勢自体は、正直素晴らしい。だが、ビジネス側のスピード感や優先度にまったく寄り添えないのが問題。
たとえばプロダクトのローンチが迫っている時、チームとしては「多少コードが荒くてもいいから、まず動くものをリリースしよう」と判断する場面がある。
だが彼女はそういう「割り切り」が大の苦手で、汚いコードは絶対に許さない。
しかも機嫌が悪くなる。
ミーティングでも静かに険しい顔をしていて、周囲も話しかけづらい空気を感じている。
正論ばかりで論破しようとするわけではないが、「これでは技術的負債が…」という言葉がもはや口癖のように繰り返される。
いや、それはわかってる。でも今はそこじゃないんだ……
さらに困るのは、彼女が導入したがるツールや技術の学習コストが高すぎること。
他のメンバーからも「正直ついていけない」「彼女のためのプロジェクトじゃない」といった声が上がってきている。
表面上はみんな協力的だが、裏では「あれはちょっと…」とこっそり相談されているのが現状だ。
簡単に外すこともできない。技術的には信頼してるし、いなくなったら困ることもある。
でも、今のままではチームのバランスが崩れる。
そんな彼女に、どう伝えればいい?
プログラマーって聞くと今の若い人は稼げる業種って思うかもしれない。でも昔は、そのイメージとはまるで真逆だったんだよ。
90年代初頭、日本はバブルの余韻が残ってたけど、IT業界なんてまだオタクの延長みたいに見られていた。NECのPC-9801シリーズがオフィスの定番で、OSはMS-DOS 3.3とか、その後にWindows 3.1が出ておお、マウスで操作できる!なんて騒がれていた時代だ。
もちろんインターネットなんて一般にはまだ普及してなかった。せいぜいパソコン通信。ニフティサーブ、PC-VAN、アスキーネット。回線速度は2400bps。ピーヒョロロっていうモデム音が夜中の住宅街に響いていた。
俺らはそういう環境でC言語やアセンブラを叩いてたんだ。コンパイルに時間がかかるから、トイレに行って戻ってきてもまだ終わってなかったりした。
今みたいにGitHubでコードを共有なんて夢のまた夢。ソースのやり取りはフロッピーディスクで手渡しだ。5インチのぺらぺらのやつな。運が悪いと磁気にやられて一発で飛ぶ。だから俺たちはよくフロッピー神社に参拝とか冗談言ってた。
正社員で手取り20万ちょっと。下請けやフリーランスだともっと安い。今でいうSESの走りみたいな人売りも普通にあった。客先常駐でCOBOLやらされてバグが出れば徹夜。オフィスに寝袋持ち込んで、カップヌードルと缶コーヒーの山を築く。徹夜明けに食う吉野家の牛丼が唯一のご褒美。今みたいにエンジニアは市場価値が高いなんて考え方はなかったからな。ただの駒だよ。
仕事は増えるのに単価は下がる。Windows 95の発売で世の中はインターネット元年なんて浮かれてたけど俺たちプログラマーの現実は泥臭いコード修正の山。Visual Basic 6.0やDelphiが出て「これで開発効率が上がるぞ」なんて言ってたが、結局は納期に追われるだけ。SunのJavaが登場したときも「Write once,run anywhere」なんて夢を見せてくれたけど、実際には動かないアプレットと格闘する日々。
Linuxが台頭してきたのもこの頃だ。
SlackwareやRed HatLinux 5.2をCD-ROM雑誌付録で手に入れて、夜な夜なインストールに挑戦。LILOがうまく動かなくて起動しない、ネットワークカードを認識しない、X Windowが真っ黒。そんな壁に何度もぶつかっては2ちゃんねる(当時はまだ草の根BBSが多かったが)やUNIX USER誌を読み漁って解決する。それが楽しくて仕方なかった。でも金にはならなかった。オープンソースに貢献しても無償の善意で済まされるだけ。Red HatやMySQL ABが上場するまでは、ただのボランティア活動と見なされてた。
今思うと、あの頃は純粋だった。
技術そのものが楽しくて、ASCIIやOh!Xを小脇に抱えて徹夜でコードを書いた。秋葉原でジャンクパーツを漁って自作PCを組み立ててベンチマークの数字で一喜一憂した。
飯代を削ってもSCSIのハードディスクに投資したし、月刊アスキーの付録CD-ROMに入ってたシェアウェアを片っ端から試した。儲けようなんて意識はなかった。ただ、面白いものを作りたかった。
それが今じゃITは完全に拝金主義。コードの美しさより投資家の顔色を見てる。エンジニアもどこが年収高いかばかりで、言語やフレームワークを選ぶ基準が金になっちまった。Pythonが流行るのもAIブームに便乗してのことだし、ブロックチェーンやNFTなんかバブルがはじける前提のネタ探しにしか見えなかった。
もちろん、技術が商業化されて豊かになった面もある。AWSやGCPのおかげで誰でも世界規模のサービスを立ち上げられるようになったし、GitHubやDockerで開発環境も夢みたいに便利になった。だがその一方で楽しいからやるという純粋さはどこへ行ったんだろう。GitHubの草がどれだけ生えてるかが採用基準になる時代。Qiitaに記事を投稿するのも、技術共有じゃなくて転職市場でのポイント稼ぎ。
あの頃には確かに、金ではなく面白さに突き動かされる熱があった。それが今は金の匂いに上書きされてしまったように感じる。
でも稼げなくても、やる価値があった。
今の若いエンジニアたちにその気持ちがどれだけ伝わるかは分からない。
当時「Hello, world.」と表示されるだけのプログラムに、30年前の俺は心を震わせていた。