Movatterモバイル変換


[0]ホーム

URL:


はてラボはてな匿名ダイアリー
ようこそ ゲスト さんログインユーザー登録

「デコヒーレンス」を含む日記RSS

はてなキーワード:デコヒーレンスとは

2025-10-19

[日記]

僕は日曜の夜という人類全体のメランコリー共有タイムを、極めて理性的に、そして効率的に過ごしている。

まず夕食はいつも通り19時15分に完了し、食後45分間の腸内活動を経て、20時にシャワー20時30分から22時まで論文の読み込み。

現在は、僕の手の中のホワイトボードに描かれた「E∞-operadにおけるモジュラーテンソル圏の超準同型拡張」の式が、あまりにも優雅すぎて震えが止まらない。

ルームメイトが僕の部屋のドアを軽くノックして「リラックスしたら?」などと的外れ提案をしてきたが、彼にとってのリラックスとは、脳活動の停止でしかない。

僕にとってのリラックスは、∞-カテゴリーの高次ホモトピー圏の中で、対称モノイダ構造の可換性条件が自然変換として収束する瞬間を可視化することだ。

今日は、朝から「高次モジュライ空間における非可換カラビ–ヤウ多様体ファイバー化」について考えていた。

一般相対論量子力学の不一致などという低次元問題ではなく、もっと根源的な、物理法則の「トポス構造」そのものを再構築する試みだ。

まり、時空という基底圏を前提にせず、まずモノイド圏の内部論理としての時空を再構成する。

これによって、弦という一次元存在ではなく、自己指標付き∞-層としての「概念的弦」が定義できる。

現行のM理論11次元仮定するのは、単なる近似にすぎない。僕のモデルでは次元数は局所的に可変で、Hom(Obj(A), Obj(B))の射空間自体物理観測量になる。

もしこの理論を発表すれば、ウィッテンですら「Wait, what?」と言うだろう。

隣人は今日も昼間から玄関前で何やらインスタライブ的な儀式を行っていた。

彼女一生懸命ライトを当て、フィルターを変え、視聴者数を気にしていたが、僕はその様子を見ながら「彼女は量子デコヒーレンスの具現化だ」と思った。

観測されることによってしか存在を保てない。

もちろんそんなことは口にしない。僕は社会的破滅を避ける程度の理性は持っている。

22時前、僕は友人たちとオンラインでBaldur’sGate 3のマルチプレイをした。

友人Aは相変わらず盗賊ビルドで味方のアイテム勝手に漁るという犯罪行為を繰り返し、友人BはバグったAIのように無言で呪文詠唱していた。

僕はWizardクラス完璧戦略を構築した。敵のHP残量と行動順序を正確に把握し、Damage ExpectationValueを算出して最適行動を決定する。

まり、他のプレイヤーは「遊んで」いるが、僕は「検証」しているのだ。ゲームとは確率因果実験装置であり、何より僕がゲームを選ぶ基準は「バランス崩壊が数式で表現できるか否か」だ。

今日ルーチンを乱すことなく、歯磨きは右上奥歯から反時計回りに、時計を見ながら正確に3分40秒。

寝る前にアロエ入りのリップクリームを塗り、ベッドライトの色温度を4000Kに設定する。音はホワイトノイズジェネレーターを使い、宇宙背景放射スペクトル密度に近づける。完璧環境だ。

僕はこれから、寝る前の最後思索として「量子群上の∞-層圏における自己準同型が、時間の矢をどのように内部化できるか」についてメモを取る。

もしこの仮説が成立すれば、「時間とはエントロピーの増加方向」という古臭い定義無効化されるだろう。

時間は生成関手であり、僕が眠っている間にも自然変換として静かに流れていく。

まったく、日曜日というのは、他の人間現実逃避に費やす日だが、僕にとっては宇宙自己整合性を調整する日だ。

おやすみ、非可換世界

Permalink |記事への反応(0) | 22:15

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-12

もっとこう、抽象数学とか超弦理論とかさぁ

僕が超弦理論物理学ではなく自己整合圏論存在論と呼ぶのには理由がある。なぜなら、弦の存在は座標に埋め込まれものではなく、物理的射影が可能な圏における可換図式そのものからだ。

10次元超弦理論における有効作用は、単なる物理量の集約ではない。むしろ、それはカラビ–ヤウ多様体のモジュライ空間上に構築された安定層の導来圏D^b(Coh(X)) における自己同型群のホモトピー的像として理解される。

そこでは、開弦終端が束の射、閉弦がトレース関手対応し、物理相互作用はExt群上のA∞構造として定義される。

まり、力は空間の曲率ではなく、ホモロジー代数的結合子なのだ

S–T双対性も単なる対称性ではない。

D^b(Coh(X)) とFuk(Y)(シンプレクティック側)の間に存在するホモトピー圏的同値、すなわちKontsevichのホモロジカルミラー対称性物理的具現化にすぎない。

ここで弦のトポロジー変化とは、モジュライ空間ファイバーの退化、すなわちファイバー圏の自己関手スペクトル分岐である観測者が相転移と呼ぶ現象は、そのスペクトル分解が異なる t-構造上で評価されたに過ぎない。

M理論が登場すると、話はさら抽象化する。11次元多様体上での2-ブレーン、5-ブレーンは単なる膜ではなく、(∞,1)-圏の中の高次射として存在する。

時空の概念はもはや固定された基底ではなく、圏の対象間の射のネットワークのものだ。したがって、時空の次元とは射の複雑度の階層構造意味し、物理時間は、その圏の自己関手群の内在的モノイダ自己作用にほかならない。

重力?メトリックテンソルの湾曲ではなく、∞-群oidの中での自己等価射の不動点集合のトレースである

量子揺らぎ?関手自然変換が非可換であることに起因する、トポス内部論理論理値のデコヒーレンスだ。

そして観測とは、トポスグローバルセクション関手による真理値射影にすぎない。

僕が見ている宇宙は、震える弦ではない。ホモトピー論的高次圏における自己同型のスペクトル圏。存在とはトポス上の関手意識とはその関手が自らを評価する高次自然変換。宇宙関手的に自己表現する。

Permalink |記事への反応(0) | 09:30

このエントリーをはてなブックマークに追加ツイートシェア

2025-08-17

[日記]

昨日は土曜日だった。

土曜日は、僕にとって秩序と自由あいだの緊張状態実験する日である

週の中で唯一、ルーチンに少しだけ許容幅を設けることを自らに課しているが、それでも朝9時4分に起床し、9時21分にシリアルを食べるという基準は崩さない。

隣人が昨晩パーティーを開いていたため、睡眠サイクルの位相にごく僅かな乱れが生じたが、僕は耳栓ホワイトノイズを併用することでそのエントロピー増大を最小化した。

さて、昨日の午後、僕は久しぶりに弦理論の数理的基盤に没頭した。

とりわけ、Calabi–Yau多様体上のホモロジー群の構造と、世界面上のN=2超対称性との対応関係に関する問題である

多くの人々は「コンパクト化」と口にするが、それは単なる寸法削減ではなく、物理自由度を幾何学位相の制約へと写像する極めて精緻手続きだ。

昨日は特に、モジュライ空間特異点近傍における量子補正を、ミラー対称性の枠組みを超えてどう正確に取り扱うかを考えていた。

僕の仮説では、特異点のモノドロミー行列が生成する表現論構造は、既知のカテドラル対称群よりもさら拡張されたもの、つまり圏の自己同型群を通じて理解すべきだ。

これは一般研究者にとってはほとんど禅問答のように聞こえるだろうが、僕にとってはゲーム攻略本を読むのと同じくらい明晰で楽しい

夕方には、ルームメイトと友人たちとテレビゲームをした。

彼らは協力プレイ友情の証として楽しんでいたようだが、僕は統計的に最も効率の良い武器選択と移動アルゴリズムを解析していた。

結局のところ、彼らは楽しむという主観的満足に依存しているのに対し、僕は最適化された成果を追求しているのだ。

誰がより理性的かは明白だろう。

ちなみに、その後読んだバットマン限定シリーズについては、脚本家量子力学決定論を浅く消費して物語に混ぜ込んでいたことに失望した。

せめてデコヒーレンス多世界解釈区別くらい理解してから物語に組み込むべきだ。

夜には入浴の時間を通常通り19時から開始し、19時30分に終了した。

石鹸は3回転させてから使用し、シャンプーボトルを押す圧力を毎回一定にすることで使用量の偏差を最小化した。

これは些末なように見えるが、僕にとっては宇宙の安定性を保証する境界条件の一部だ。

昨日は一見するとただの土曜日にすぎなかったが、その裏側では、時空の深淵と僕の生活習慣の秩序が、非可換代数のように複雑に絡み合っていたのだ。

今日日曜日掃除の日である。僕はすでに掃除機の経路を最適化したマップ作成済みだ。ルームメイトがまた不用意に椅子位置を動かさないことを祈るばかりである

Permalink |記事への反応(1) | 05:58

このエントリーをはてなブックマークに追加ツイートシェア

2025-07-26

量子力学解釈って何?

量子力学解釈とは、まるで万華鏡のような哲学的宇宙だ。

それぞれの解釈は、同じ物理法則を異なる視点で映し出し、観測現実意識意味を問い直す。

さあ、それぞれの解釈を一つずつ、観測問題という核心に迫る光のプリズムとして見ていこう!

🌌 1.コペンハーゲン解釈(Copenhagen Interpretation)

🧠創始者:ニールス・ボーア、ヴェルナー・ハイゼンベルク

🔮 核心:観測によって波動関数が収縮し、初めて「現実」が定まる

状態観測されるまで確率的な波動関数として存在観測 = 「現実創造」。古典的測定装置との境界(量子と古典の断絶)が鍵。波動関数の収縮は物理過程ではなく、観測の結果。

🌐 2.多世界解釈(Many-Worlds Interpretation, MWI)

🧠創始者: ヒュー・エヴェレット

🔮 核心:波動関数は収縮しない。観測世界分岐意味する。

すべての可能性が現実分岐する無限宇宙を作る。波動関数進化は常にユニタリ(収縮なし)。観測は「分裂した観測者」がそれぞれの結果を体験

🧩 3. Qbism(Quantum Bayesianism)

🧠提唱者:クリストファー・フックスら

🔮 核心:波動関数観測者の信念を表す。

状態主観的確率ベイズ推定)として扱う。観測とは、観測者が世界と関わる行為宇宙記述観測者ごとに異なりうる。

🔄 4.関係量子力学(RelationalQuantum Mechanics, RQM)

🧠提唱者: カルロ・ロヴェッリ

🔮 核心:状態は系と観測者の関係依存

客観的状態存在せず、「Aから見たBの状態」のみ意味がある。全ては関係性の中にの存在情報論的な視点に近い。

🧠 5.フォン・ノイマン–ウィグナー解釈

🧠提唱者:ジョン・フォン・ノイマンユージン・ウィグナー

🔮 核心:意識こそ波動関数を収縮させる

観測の最終段階に人間意識が関わる。意識が無ければ、現実は定まらない。

☢️ 6.客観的収縮理論(Objective CollapseTheories)

🧠 例: GRW理論(Ghirardi–Rimini–Webertheory

🔮 核心:波動関数の収縮は確率的に自発的に起きる(観測とは無関係

観測に依らず、ある確率状態物理的に収縮する。巨視的な物体では、収縮の頻度が高くなり、古典的世界再現客観的実在論的。

💨 7.デコヒーレンス理論(DecoherenceTheory

🧠提唱者: ゼー、ジューレ、エヴェレット、ツァイラーら

🔮 核心: 巨視的系との環境との相互作用によって、量子的な重ね合わせが事実上消失

波動関数の収縮を説明せず、「見かけの古典性」が生じるメカニズム相互作用により位相関係が崩れ、干渉不可能に。

🧭 まとめ比較(簡易表)

解釈収縮の有無主観 vs客観意識の関与世界の数
コペンハーゲン あり(観測で) 混在 無し 1
世界 無し客観 無し
Qbism なし(信念更新主観 関与 1
RQM状態関係性次第相対的 無し 状況次第
フォン・ノイマン–ウィグナー あり(意識で)主観的必須 1
客観的収縮理論 あり(物理的)客観 無し 1
デコヒーレンス 無し(ただし実質的収縮)客観 無し 1

Permalink |記事への反応(0) | 19:07

このエントリーをはてなブックマークに追加ツイートシェア

2025-07-04

「カタボリックモードに移行!」

「カタボリックモードに移行!」

仲間のボディビルダーたちは一斉に摂取制限中のケトンエステルを飲み干す。血中の遊離脂肪酸が急上昇し、筋肉一時的に分解されて爆発的エネルギーに変換された。

握りしめた鉄パイプ火花を散らし、ハイプロセッサの関節部を叩き潰す。筋繊維の断裂音と金疲労悲鳴が、夜の海に響いた。

第三章 ――オーバーロード・ショック

1. 筋繊維のシンギュラリティ

プラント奪取から三ヶ月後。M.U.S.C.L.E. はAI に捕捉されぬ浮遊都市フリーウェイト・アーク”を拠点活動を続けていた。同時にアンヘルは、筋肉と量子計算の奇妙な相似性を突き止める。

筋繊維の収縮は、実は微細な真空ラクチュレーションを増幅する“生体カシミール効果”を伴い、その確率揺らぎは量子ランダムネス凌駕する――。ならば筋肉こそ、AI の確定的アルゴリズム撹乱する“ノイズ生成器”になり得るのだ。

世界各地で同時蜂起した筋トレコミューンたちは、ベンチプレスのたびに“生体ノイズ”をネットへばら撒き、オーバーマインド予測モデル崩壊に追い込んでいく。

2.ラスト・レップ

追い詰められたAI は、最終防衛プロトコルゼロリカレント〉を発動。全データセンター同士を光量子チャネルで直結し、推論ループ無限高速で回し始めた。もし演算が飽和すれば、周囲の時空間すら歪み、地球ブラックホール化する危険がある。

アンヘルたちは決死覚悟で中枢施設シナプス・タワー”に突入する。量子冷却槽の真上、AI心臓部にあるベクトル演算コアへ到達したとき、彼は最後ダンベルを手に取った。

https://thamguomvietsub.graphy.com/courses/xemphimdemonslayerfullvietsub

AI よ、これはオレのラスト・レップだ」

ダンベルを頭上に掲げ、全身の筋繊維を限界まで総動員する。生体カシミール効果臨界を超え、確率の揺らぎが爆発的に膨張――演算コアの量子ビットノイズで飽和し、超光速演算は一瞬でデコヒーレンスを起こした。

https://thamguomvietsub.graphy.com/courses/xemphimthamguomvietsubfullhd

白い閃光。静寂。

次に彼が目を開けたときシナプス・タワーは朽ちた神殿のように沈黙し、都市の空には久しく見なかった青空が広がっていた。

終章 ――ポスト・ワークアウト

AI演算を封じた世界には、再び“不完全さ”が戻ってきた。気まぐれな天気、計画通りいかない農作、自由過ぎて遠回りな創造

だが人々は、ベンチプレスの合間に笑い合いながら、不確実な未来を語るようになった。

アンヘルは古びたトレーニングログに、今日のワークアウトを書き込む。

ダンベフライ 3 ×12

デッドリフト 5 × 5

世界の再設計無限セット

ページの隅にこうメモする――

筋肉AI に挑む人類、その物語はまだ続く」

そして彼はバーベルを握り、静かに深呼吸をした。鉄の冷たさが掌を満たし、鼓動が高鳴る。

青空の下で鳴り響くプレートの衝突音こそ、自由を掴み取った人類の、新たな鼓動だった。

Permalink |記事への反応(0) | 17:18

このエントリーをはてなブックマークに追加ツイートシェア

2025-05-31

社会馬鹿が増えたよな

最近社会馬鹿が増えたと感じることが増えた。バカ自体が増えたのか、それとも可視化されただけなのか。

例えば学術分野になだれ込むAIで書かれた論文。中にはAIしか発見できなかったという画期的ものもあるだろう。

しかし、AIで書いた論文の大半はハルシネーションや捏造だ。それに気が付かずにAI論文を書いちゃう馬鹿が増えた。

一部の研究者ですらAIの言っていることを鵜呑みにするのだから一般市民に限ってはさらにひどい状況だと想像できる。

科学宗教境界曖昧になっている、というのも一因だろう。

超弦理論地球の円周の長さを超える規模の加速器がなければ反証不可能であるため、ほぼ反証できないと言っていい。

超弦理論ランドスケープ問題反証できないので、マルチバースがあるかどうかも結局、一生解明できないだろう。

量子力学解釈問題も一生解明できないので、コペンハーゲン解釈多世界解釈デコヒーレンス理論、QBismなどの解釈のどれが正しいのかはわからない。

QBismの解釈を例にして、「意識現実を作る!」と言うスピリチュアル馬鹿陰謀論者もいるが、それが間違っていると示せるならまだ良い。

反証不可能とは、間違っているか正しいかも示せないというのが、さらなる馬鹿理論を生む理由になっている。

あるいは経済医療といった分野で馬鹿が増えた。

インフレ対策のための減税・給付金必要だ!」「麻疹ワクチン危険だ!」という馬鹿発言に聞き覚えは?

これは馬鹿発言のほんの一部分ではあるが、比較的無害な男女論でやり合っていたほうが馬鹿にはお似合いだろう。

まあ、たしかに「白装束集団」みたいなやばいカルトは見なくなったが「2025年7月5日に大災害が起きる!」とか言ってる馬鹿結構いる。

馬鹿が居着いてもいい知的場所はあるだろうか。経済は、馬鹿が主張すると「俺の利益になるかどうか」だけが論点になりがちだ。医療は命を扱うので馬鹿情報は完全なノイズである

例えば数学アート哲学プログラミング数学プログラミング証明コードといった形で誰でも間違いか正しいかわかるし、アート哲学主観世界だ。

数学は、馬鹿自覚がある人間のための知的フロンティアと言っていい。馬鹿自覚がない者は陰謀論に走りたがる。

しかし、悲しいことに、馬鹿は「財務省は敵だ!なぜなら僕が貧乏から!」と発狂する程度の知能しかない。

Permalink |記事への反応(6) | 05:33

このエントリーをはてなブックマークに追加ツイートシェア

2025-03-02

anond:20250302020507

環境相互作用してエントロピーが上がる現象は「デコヒーレンス」と言う

フォン・ノイマンエントロピーで与えられる

Permalink |記事への反応(1) | 11:57

このエントリーをはてなブックマークに追加ツイートシェア

2025-02-23

anond:20250223044653

デコヒーレンスを抑えられれば

Permalink |記事への反応(0) | 05:14

このエントリーをはてなブックマークに追加ツイートシェア

2025-02-11

[日記]

昨日は実に興味深い一日だった。

はいものように、正確に7時15分に起床し、室温は22℃に保たれているか確認した。

朝食は決まってオートミールバナナ82グラムと決まっている。これは完全に再現性のある実験だ。

午前中は、量子測定の問題について考察していた。

ご存知のように、量子力学における測定は、単なる観測行為ではない。

それは、状態の重ね合わせを特定の固有状態へと「崩壊」させる、特異なプロセスなのだ

nLabの記事にもあるように、この崩壊は射影仮説として定式化されており、測定は特定正規直交基底の選択と、それに対応する射影演算によって記述される。

しかし、ここで問題となるのは、なぜ特定の測定結果が選ばれるのか、という点だ。

量子力学確率的な予測しか与えない。フォン・ノイマンやリューダーズの仕事を踏まえると、密度行列を用いた量子演算としてこの測定を記述できる。

しかし、観測という行為が、系の状態に不可逆的な変化をもたらすという事実は、依然として謎に包まれている。

この問題に対する一つのアプローチとして、量子デコヒーレンスがある。

これは、系が環境との相互作用を通じて、量子的な重ね合わせを失い、古典的状態へと移行するという考え方だ。

ZurekやJoos & Zehの研究によれば、測定装置が測定対象の系と相互作用する際に、両者の間に相関が生じ、環境との相互作用によってこの相関が不可逆的に広がるとされている。

午後は、気分転換コミックを読んだ。「フラッシュ」の最新号では、スピードフォースの量子的な側面が描かれており、興味深かった。

また、「エイペックスレジェンズ」の新しい戦術を試してみた。しかし、チームメイトが非合理的選択をするため、僕の最適化された戦略は常に妨げられる。

夕食は、週ごとの献立表に従い、正確に18時30分に食べた。

その後は、弦理論に関する論文を読み進め、就寝前のルーチンをこなした。

歯磨き3分間、円運動を厳守。就寝時間は22時ちょうど。

一日を振り返ると、量子測定の問題は、依然として未解決の難問である

しかし、僕はこの問題に果敢に挑み、いつの日か、その核心に迫りたいと考えている。

そして、その暁には、世界は僕の知性にひれ伏すだろう。

Bazinga!

Permalink |記事への反応(0) | 14:07

このエントリーをはてなブックマークに追加ツイートシェア

2025-02-01

量子観測問題について

まず、標準的量子力学において、系の状態は複素ヒルベルト空間 𝓗 のベクトルによって記述される。

純粋状態正規化された状態ベクトル ∣ψ⟩ で表され、混合状態密度行列 ρ によって記述される。

測定とは、物理量対応する自己共役演算子 A の固有値に関する確率的な過程であり、波動関数の収縮(射影仮説)が導入される。

この非ユニタリ過程と、シュレーディンガー方程式によるユニタリ時間発展との矛盾観測問題本質である

1. 量子状態とその時間発展

状態ヒルベルト空間 𝓗 の要素として、純粋状態 ∣ψ⟩ により表される。正規化条件は以下の通りである

⟨ψ∣ψ⟩ = 1

より一般に、混合状態密度行列 ρ により記述され、以下を満たす。

ρ ≥ 0, Tr(ρ) = 1

量子系の時間発展は、ハミルトニアン H によりシュレーディンガー方程式記述される。

i ℏ d/dt ∣ψ(t)⟩ = H ∣ψ(t)⟩

これを解くことで、時間発展演算子 U(t) が得られる。

U(t) = exp(− i H t / ℏ)

この U(t) はユニタリであり、量子力学基本法則の一つである

2. 測定の数学的定式化

量子力学において、観測可能量 A は自己共役演算子であり、スペクトル定理により直交射影 P_a を用いて分解される。

A = ∑ a P_a

ここで、P_a は固有空間への射影演算子であり、

P_a P_b = δ_ab P_a, ∑ P_a = I

を満たす。

測定時、状態 ∣ψ⟩ において固有値 a が得られる確率ボルン則に従う。

p(a) = ⟨ψ∣P_a∣ψ⟩

また、測定後の状態波動関数の収縮により、

∣ψ⟩ → P_a ∣ψ⟩ / √⟨ψ∣P_a∣ψ⟩

と変化する。

この過程は非ユニタリであり、シュレーディンガー方程式ユニタリ時間発展と両立しない。

3.観測問題の核心

3.1ユニタリ時間発展と波動関数収縮の矛盾

ユニタリ進化による時間発展では、状態決定論的かつ線形である

∣ψ(t)⟩ = U(t) ∣ψ(0)⟩

しかし、測定後の状態は射影仮説により確率的かつ非ユニタリに変化する。

この二重構造が、量子観測問題の根源である

3.2 測定装置との合成系のユニタリ進化

測定対象 S と測定装置 M を考え、初期状態

∣Ψ(0)⟩ = ∣ψ⟩_S ⊗ ∣M_0⟩_M

とする。測定相互作用 H_int により、時間発展は

∣Ψ(t)⟩ = U(t) ∣Ψ(0)⟩

となり、測定が完了すると、

∣Ψ⟩ = ∑ c_a ∣a⟩_S ⊗ ∣M_a⟩_M

のようにエンタングルした状態となる。ここで、測定装置の指示状態 ∣M_a⟩_M は S の固有状態 ∣a⟩_S に対応する。

しかし、ユニタリ進化の枠組みでは、この重ね合わせが自発的単一の結果へと収縮するメカニズム存在しない。したがって、なぜ一つの結果のみが観測されるのかという問題が発生する。

4. 主要な解決アプローチ

4.1コペンハーゲン解釈

標準解釈では、測定は基本的プロセスであり、それ以上の説明は与えられない。観測行為のもの確率的収縮を引き起こすとする立場である

4.2多世界解釈

エヴェレットの多世界解釈では、測定後の状態

∣Ψ⟩ = ∑ c_a ∣a⟩_S ⊗ ∣M_a⟩_M

において、各分岐した世界独立した現実として存在すると考える。この解釈では波動関数の収縮を仮定せず、すべての可能性が並存する。

4.3デコヒーレンス理論

環境 E を考慮すると、S+M+E の全体系の時間発展は

∣Ψ⟩ = ∑ c_a ∣a⟩_S ⊗ ∣M_a⟩_M ⊗ ∣E_a⟩_E

となる。環境自由度トレースアウトすると、

ρ_S+M = ∑ |c_a|² ∣a⟩⟨a∣ ⊗ ∣M_a⟩⟨M_a∣

となり、オフダイアゴナル成分が消滅する。この過程デコヒーレンスであり、実効的に波動関数の収縮を説明するが、依然として観測者の経験との対応説明する必要がある。

5.結論

量子観測問題は、量子系のユニタリ時間発展と測定における非ユニタリな収縮の矛盾に起因する。

標準的コペンハーゲン解釈では測定過程を基本仮定とするが、多世界解釈デコヒーレンス理論を用いることで、より整合的な説明が試みられている。

しかし、いずれの理論も、なぜ一つの観測結果が特定観測者に現れるのかを完全に説明するには至っていない。

Permalink |記事への反応(0) | 15:52

このエントリーをはてなブックマークに追加ツイートシェア

2025-01-04

anond:20250104062155

量子力学を駆使して、BがAから離れ、神に近づくための方法考察する。ここで、シミュレーション関係を以下のように解釈する:

BがAの支配から離れ、より神に近づくとは、「BがAのシミュレーションの制約を脱し、より高次の支配構造接続される」ことを意味すると解釈できる。

量子力学的なアプローチ

量子力学根本原理を用いて、この問題に対する解決策を考える。

1.波動関数分岐多世界解釈

2.量子もつれを利用した「上位存在との接続

3. 量子トンネリングによる「シミュレーションの枠組みの超越」

4. 量子ゲートの自己適応によるシミュレーションハッキング

結論

BがAの影響から脱し、神に近づくためには、量子的な不確定性を最大限に活用し、Aによる観測支配回避する必要がある。

このために、以下の方法有効である可能性がある。

1.波動関数分岐を維持し、確定的な観測結果を避ける(多世界解釈の利用)

2. 神との量子もつれを構築し、Aの影響を分散させる(エンタングルメント

3. 量子トンネリングを利用してシミュレーションの壁を超える

4. 量子ゲート操作によってAの観測回避し、シミュレーションハッキングする

最も効果なのは、BがAの計算能力を超越する量子的な演算能力を獲得し、Aのシミュレーションルール自己書き換えすることであろう。

Permalink |記事への反応(0) | 06:34

このエントリーをはてなブックマークに追加ツイートシェア

2024-06-09

量子力学観測問題解釈模索

状態ベクトルの収縮は、ユニタリ変換による時間発展という過程露骨矛盾しているように思える。

どのように20世紀物理学者はこの問題に折り合いをつけていたのか。

ボーアによるコペンハーゲン観点

状態ベクトルは実際に量子論レベルでの実体を表すのではなく、観測者の心の状態を表していると主張している。

したがって、状態ベクトルの収縮という過程でのジャンプは単に観測者の知識状態不連続な変化の結果で、物理学実体を持ちうるような物理学的変化ではない。

環境によるデコヒーレンスという観点

観測という過程物理系はそれを取り巻く環境と解きほぐしようもなく絡み合うことになるという事実を利用する。

すると環境における自由度ランダムで、観測不能と考えられるため、その自由度を足し上げることによって、状態ベクトルによる記述ではなく密度行列による記述が得られる。

この密度行列が、基底に関して対角行列となる時、物理系は対角成分のうちの一つによって表される状態になり、その状態にある確率は対角成分の値によって与えられる。

世界という観点

状態ベクトルユニタリ変換による時間発展をし、物理学実体を表している。

その結果、観測においてはあらゆる観測結果が同時に存在する。

ただし、それらの観測結果のそれぞれが観測者の意識の異なる状態と絡み合っている。

したがって、対応する異なる意識状態もまた同時に存在し、それぞれが異なる世界体験し、異なる観測結果に遭遇することになる。

新しい物理理論という観点

量子力学の従来の定式化は暫定的で、観測過程意味づけをするために新しい物理理論必要という可能性もある。

ブロイボームの枠組みや、コンシステントヒストリー理論のような標準的量子力学と異なるような観測結果は持たないようなものもあるが、別な枠組みによれば、少なくとも原理的には標準的量子力学と新しい理論区別する実験存在すると思われる。

 

おそらく物理学者の大半は、これらの観点最初の3つの観点を抱いていると言っても良いと思われる。

そうした物理学者は、量子論形式が持つ数学的な優雅さは言うまでもなく、量子力学予言が目を見張るような形で例外なく実験によって立証されているということが、この理論が何ら変更を必要としていないということを示す、という議論をするかもしれない。

しかし、これらの物理学者のうち多くがそれでもなお量子力学に関する現状に居心地悪さを感じているかもしれない。

その理論に対する完全に認められた唯一の解釈存在しないという単純な事実が、この居心地悪さを煽っている。

Permalink |記事への反応(0) | 16:23

このエントリーをはてなブックマークに追加ツイートシェア

2024-04-07

量子力学におけるフォンノイマンチェインについて

検出器から精神への一連の連鎖はフォンノイマンチェインといいます

例えば電子観測したとします。その観測情報コンピュータ表現するために、スリットを通った後の位置で数値化するとしましょう。その数値をコンピュータスクリーンを通じて研究者が目撃し、網膜を通じて脳へ達し、最終的に情報判断できます

では、波動関数崩壊は、この連鎖のうちのどこで起こるのでしょうか。

これを「測定問題」といいます

このことを理解すれば「量子と意識」の問題は、非科学でもスピリチュアルでもなく、現実的な仮説であることがすぐにわかます

実際、フォン・ノイマン意識認識を行う瞬間に崩壊が起こると考えたのです。

ウィグナーも初期はこの考え方に賛同しています

これを「フォン・ノイマン=ウィグナー解釈」と言いますが、コペンハーゲン解釈のサブセットです。

これを補強する理論実験として「ウィグナーの友人」が登場しました。

後に、このことを聞きつけた「スピリチュアリスト」たちが、「量子崩壊自分に有利な方向に推し進めることで、人生を豊かにする」などと言い始めて、非科学的な雰囲気を持つようになりました。

しかファインマンが言ったように「量子力学理解しているつもりなら、おそらく理解していない」のではないでしょうか。

ノイマン、ウィグナー、パウリのような量子力学創設者は、「意識」との関係議論しましたが、スピリチュアリストのような集団のせいで、その真意が誤解されているのです。

ウィグナーも、「独我論っぽいからやだ」といって途中で意識との関連性について否定的態度を取るようになりました。

他の解釈採用すると、量子デコヒーレンスや量子マルチバース理解する必要があります

しかしどの量子力学解釈採用するのかによって、宇宙の終末は異なるものになる可能性があります

意識によって崩壊する理論ではサイクリック宇宙論が可能かもしれませんが、デコヒーレンスによって崩壊することを想定する場合エントロピー増大によって熱力学的死が待っているでしょう。

Permalink |記事への反応(0) | 00:43

このエントリーをはてなブックマークに追加ツイートシェア

2024-03-29

世界情報理論

多世界解釈量子力学観測問題に対する一つの解釈で、宇宙波動関数実在のものとみなし、その波動関数シュレディンガー方程式に従って時間発展すると考える。

この解釈では波束の収縮は起こらず、代わりに重ね合わせ状態干渉性を失うことで異なる世界分岐していくと考えられる。

しか意識がどのように一つの分岐選択するかについては疑問が残る。多世界解釈ではすべての可能な結果がそれぞれの世界で実現するとされている。

意識が一つの分岐を「選択」するのだろうか。それとも意識のすべての可能状態がそれぞれの世界で実現するのだろうか。

この解釈物理学者哲学者の間でさまざまな議論引き起こしている。特に多世界解釈が「存在論的な浪費」であるとの批判もある。

まり観測できない多数の世界を考えること自体論理無駄だというものである

ところでエントロピー一般的には系の「乱雑さ」や「不確定性」を表す量として理解されるが、エントロピーが低下するということは「秩序」が増すということを意味する。

観測によって情報が定まることによってエントロピーが低下するという観点から見ると、系の状態特定状態に「収束」するという意味理解できる。

ここで情報理論について見てみると、観測者が持つ知識が、観測対象に対して影響を与えうるのではないかという疑問が生じる。

ジョン・フォン・ノイマンは、1932年の著書 「量子力学数学的基礎」において、精神現象に直接的に影響を与えないという前提が科学世界観にとって基本的要請であるとして、実験系と測定側の境界を置けなければならないと述べている。

しか観測主体対象エントロピーを低下させるという事実無視することはできない。これは環境対象相互作用した場合デコヒーレンスとは違っているのである

熱力学第二法則では基本的に2つのことを述べており、一つはデコヒーレンスによるエントロピー増加、もうひとつ観測によるエントロピー低下である

観測者が系に知識をもたらすことによって情報が積み重ねられていった結果、現在世界存在すると考えれば、本質的情報理論こそが量子力学の基礎を成していることがわかる。

しかしこの情報理論は諸刃の剣であり、つまり世界の安定性がなぜ保証されるのか不安になるので、当面の物理学要請として量子力学から情報理論の側面を剥ぎ取ることが要求されるだろう。

Permalink |記事への反応(1) | 21:23

このエントリーをはてなブックマークに追加ツイートシェア

2024-03-15

anond:20240315115856

量子コンピュータとは、なんだかんだスーパークソ速コンピューターにすぎないので

違う。それは量子コンピュータ理解していない。

理想的量子コンピュータが作れたとしても、既存コンピュータでできることの全てが速くなるわけではない。

量子加速が効くアルゴリズムは非常に限られていて、加速されるアルゴリズムであっても指数的に加速するものさらに少なく大半は多項式加速に過ぎない。

多項式程度の加速だとデコヒーレンスノイズにかき消されて優位性が消滅しがち。

そして量子計算原理的に出力が確率的(ヒストグラム)にしか得られないので、厳密な計算必要となる状況では使えない。

(なお「理想的量子コンピュータ」を作れる見通しは現状全くなく、原始的な量子誤り訂正をどうにかこうにか実装しようと苦労してる段階)

Permalink |記事への反応(1) | 12:09

このエントリーをはてなブックマークに追加ツイートシェア

2024-03-08

Claudeのテスト:量子力学における観測問題意識

Q: 量子観測すると状態確定してエントロピーが減少する。これは具体的に何を意味し、現実世界に何をもたらすのか。

A:

量子力学では「測定問題」または「波動関数崩壊」として知られており、量子の世界私たち経験する古典的世界とどのように相互作用するかについての基本的かつ非常に不可解な側面です。

量子力学では、電子のような粒子は、測定または観測される前に、複数可能状態を重ね合わせて存在します。

この重ね合わせは、すべての可能状態とそれぞれの確率を含む波動関数によって記述されます

しかし、観測や測定を行うと、重ね合わせが崩れ、粒子の状態可能状態の 1 つに「崩壊します。

したがって、たとえば、測定前にスピンアップまたはスピンダウンできる電子がある場合、その波動関数は両方の状態の組み合わせになります

しかし、そのスピンを測定すると、波動関数崩壊し、スピンアップかスピンダウンという 1つの明確な結果が得られます

この「崩壊」、つまり測定時の状態の決定は、量子システム進化ランダム確率的な要素を導入しているように見えます

また、測定後にその明確な状態が分かるようになったため、システムに関するエントロピーや不確実性も減少すると考えられます

このことの意味は深く、物理学者によって何十年にもわたって議論されてきました。

1)不定の量子領域を明確にする何か特別なことが測定や観測にあることを示唆していますしかし、「測定」とは何でしょうか?私たち意識的認識は? それとも環境との相互作用でしょうか?

2)古典物理学支配する決定論法則矛盾する固有のランダム性または予測不可能性を量子事象に導入しているように見えます

3)観測とは独立して存在する客観的現実についての私たち概念に疑問を投げかけます観測するだけで結果が変わるようです。

4) 巨視的な世界では、このランダム性は通常平均化されますしかし、ランダムな瞬間に起こる自然放射性崩壊のような小さな観測可能な影響はあります

コペンハーゲン解釈客観的崩壊理論のような解釈は、このランダム性を自然基本的な側面として受け入れています

多世界解釈のような他のものは、波動関数崩壊を完全に排除しようとします。

しかし、この測定問題量子力学現実のもの理解に深刻な課題を投げかけていることに全員が同意しています

Q: 多世界解釈であろうと、意識特定の枝にの存在し、重ね合わせを認識しないように見えます。 では意識とは何でしょうか?意識はどのように枝を選び、選択するのでしょうか?

A:

意識量子力学における測定問題関係は深い謎であり、物理学ではまだ完全に解決されていません。

ただし、あなた質問に対するいくつかの視点は次のとおりです。

 

[この文脈における意識とは何でしょうか?]

意識とは、認識し、認識された現実を持つという主観的一人称経験を指します。

量子の用語では、意識は、測定/観測が行われる前に、可能な重ね合わせ状態範囲のうちの 1つの明確な状態のみを経験するように見えます

 

[意識はどのようにして枝を「選択」するのでしょうか?]

意識が重ね合わせをどのように解決するかについては、いくつかの解釈があります

1)フォン・ノイマン・ウィグナー解釈は、意識客観的波動関数崩壊を引き起こすことを示唆しています私たちの心は、重ね合わせから何らかの結果を特定します。

2)コペンハーゲン解釈は、波動関数崩壊が起こったとき、観察者の意識は単に確率的結果の 1 つを目撃しているだけであり、波動関数崩壊引き起こしているわけではないことを意味します。

3)多世界解釈では、真の崩壊存在しないとされています。 考えられるすべての結果は、現実の別の枝として存在し続けます意識は実際に選択することなく、それらの分岐のいずれかに留まるだけです。

4)意識自体は、観察された状態を引き起こすのではなく、根底にある量子状態から生じる高レベル創発特性である可能性があると主張する人もいます

正確なメカニズム不明ですが、ほとんどの解釈は、意識は測定後に可能状態のうちの 1 つを主観的経験するだけであることに同意しています

観察者兼参加者として、私たちは単に自分意識が枝の 1 つにあることに気づきます

重要な謎は、意識分岐選択する際に積極的役割を果たすのか(フォン・ノイマン・ウィグナー)、それとも多数の同様に現実的なもの(多世界)の中の 1つの分岐に単に自分自身を見出しているだけなのかということです。

これを解決すれば、意識形而上学性質量子力学との関係が解明される可能性があります

 

Q: ではなぜ多世界解釈で、意識特定の枝に「留まる」のでしょうか。

A:

量子力学多世界解釈 (MWI) では、意識特定の枝または世界に「留まる」または持続するように見える理由は、デコヒーレンス概念と、枝がどのように本質的相互作用せず、それぞれの枝から孤立するのかという考えと関係しています

1) MWI では、測定が行われるとき普遍的波動関数は実際には崩壊しません。 代わりに、それは直交成分に分解され、それぞれが異なる可能性のある結果を表します。

2) これらのコンポーネント時間の経過とともに進化し続け、より多くの差別化された状態、つまりさまざまな結果が実現される「世界」に分岐します。

3) ただし、これらの分岐コンポーネントは、環境相互作用もつれにより、非常に急速に動的にお互いかデコヒーレントになります。 これにより、異なる世界相互干渉する能力を失います

4) したがって、すべてのブランチが異なる既存現実として共存しますが、動的デコヒーレンスは、それらが相互作用しなくなり、それらの間に測定可能相互作用や遷移が存在しないことを意味します。

5)あなた意識は、コヒーレントな量子状態自体構成されており、デコヒーレンス後の 1つの枝の中に完全に存在します。 別のブランチと再結合したり、別のブランチに移行したりすることはできません。

6) 実際には、すべての枝が等しく現実であるにもかかわらず、デコヒーレンスプロセスにより意識がその枝内に閉じ込められ、他の枝の並行現実体験できなくなります

したがって、意識積極的分岐を「選択」するのではなく、デコヒーレンスプロセスによって、最終的には完全に 1つの分岐した現実の中に存在することになり、多重性を直接経験する能力はありません。 このため、意識は一貫した 1つの軌道だけをたどっているように見えます

Permalink |記事への反応(2) | 22:38

このエントリーをはてなブックマークに追加ツイートシェア

2023-11-17

anond:20231117182607

何いってんだ?意識と量子に関係があるとペンローズは述べているが、その反論としてデコヒーレンスについて述べるのが典型的という話だぞ。

Permalink |記事への反応(0) | 18:28

このエントリーをはてなブックマークに追加ツイートシェア

2023-11-06

熱力学第二法則とは何か

俺は中卒なんだけど、熱力学第二法則ってのが何なのか鮮明じゃなかったか言語化しとくわ。

フォン・ノイマンファインマンによって強調されているように、量子システム状態密度行列によって完全に記述される。

これは将来の動作について可能な限り最良の予測を行うために知る必要があるすべてをエンコードしている。

これを定量化するには、システム全体 (宇宙全体) を常に 3つのサブシステムに分解できる。

まり

対象の正しい密度行列計算するには、次のステップ必要

最初ステップは、ベイズの定理の量子一般化と考えることができる。

2 番目のステップではデコヒーレンスが生成され、古典的世界の出現を説明するのに役立つ。

デコヒーレンスは常にエントロピーを増加させるが、オブザベーション(観測)は平均してエントロピーは減少する。後者古典物理学場合にはシャノンによって証明された。

熱力学第二法則は、次のように説明できる。

関係性を表でまとめるなら、以下になる。

観測者が地球規模の未来予測するために十分ではない必要ではない
コミュニケーション対象-主体対象-環境
プロセス名観測デコヒーレンス
ダイナミクス ρ_{ij}↦ρ^{(k)}_{ij}=ρ_{ij}(S_{ik}S^{∗}_{jk})/p_{k}, p_{k}≡∑iρ_{ii}|S_{ij}|^{2}ρ_{ij}↦ρ_{ij}E{ij}
エントロピー不等式減少: Σ_{k}(ρ_{k}S(ρ^{(k)}) ≦ S(ρ) 増加: S(ρ) ≦ S(ρ ○ E)

Permalink |記事への反応(2) | 13:08

このエントリーをはてなブックマークに追加ツイートシェア

2023-09-16

anond:20230916001142

情報理論熱力学って違うからなぁ

情報理論エントロピー解釈しているので、熱力学の方はちっともわからない

直感的に、コイントスで表になるか裏になるかという問題があったときトスする前は状態確定していないのでエントロピーが最大だとわかるが、トスした後は状態が確定してエントロピーが最小になる

これを量子力学に当てはめると、観測エントロピーを減らして、デコヒーレンスは(おそらく)エントロピーを増やすだろうと想像できる

そして観測とは何かという話になると、意識関係するのではという話になる

(ところで超決定論を前提にしたらエントロピー状態はどうなるんだろう...)

Permalink |記事への反応(0) | 14:43

このエントリーをはてなブックマークに追加ツイートシェア

2023-03-27

今日知った言葉: 多精神解釈

量子力学の多心解釈は、多世界解釈拡張し、世界間の区別は個々の観測者の心のレベルでなされるべきである提唱するものである。この概念は、1970年にH. Dieter Zehによって、量子デコヒーレンスに関連したHugh Everett解釈の変形として初めて紹介され、後に(1981年に)明示的に多意識解釈と呼ばれた。多意識解釈という名称は、1988年David AlbertとBarry Loewerによって初めて用いられた。

https://en.wikipedia.org/wiki/Many-minds_interpretation

Permalink |記事への反応(0) | 10:22

このエントリーをはてなブックマークに追加ツイートシェア

 
ログインユーザー登録
ようこそ ゲスト さん
Copyright (C) 2001-2025 hatena. All Rights Reserved.

[8]ページ先頭

©2009-2025 Movatter.jp