
はてなキーワード:コホモロジーとは
君の言葉からは、真理への渇望ではなく、計算機資源への卑近な最適化への執着しか感じられない。
「GPSが動くから時空は実在する」?笑わせないでくれたまえ。その論理は「デスクトップのアイコンをクリックしたらファイルが開くから、コンピュータの中には小さな書類フォルダーが物理的に実在している」と主張するのと同じレベルのカテゴリー・ミステイクだ。
GPSが機能するのは、一般相対論が「有効場の理論(EffectiveFieldTheory)」として、低エネルギー領域における素晴らしい「近似」だからに他ならない。
僕が言っているのは、その近似が破綻する領域、すなわちプランクスケールにおける存在論の話だ。
君はUIの操作性の良さを、OSのソースコードの正当性と履き違えている。
時空は便利なGUIだと言ったはずだ。GPSはそのGUIが正常に動作している証拠であって、背後のコードが幾何学であることを証明するものではない。
むしろ、ブラックホールの情報パラドックスや特異点において、その「時空」というGUIがクラッシュするという事実こそが、時空が基本的な実在ではないことの決定的な証拠ではないか。
それは量子系が古典的な測定器とエンタングルした結果、波動関数が特定の固有状態に射影されるプロセスだ。
つまり観測とは、無限次元のヒルベルト空間から、君の貧弱な脳が理解できる低次元部分空間への情報の劣化コピーを作る作業だ。
君が言う「検出器のクリック」とは、導来圏の対象が持つコホモロジー的な情報が、実験室という局所的な座標近傍において「事象」として解釈されただけの影だ。
影を見て「実体がある」と叫ぶのは勝手だが、それは洞窟の住人の論理だ。
君は「言い換え」と「否定」を混同していると言うが、それは違う。
古典的な多様体論では特異点で物理が破綻するが、圏論的記述(例えば非可換幾何や行列模型)では特異点は単なる非可換な点の集積として滑らかに記述される。記述能力に差があるのだ。
これは「言い換え」ではない。「上位互換」だ。記述不可能な領域を記述できる言語体系こそが、より根源的な実在に近いと考えるのは科学の常道ではないか。
「実験で区別できるか」と君は問うが、君の貧弱な加速器がプランクエネルギーに到達できないからといって、理論の真偽が保留されるわけではない。
超弦理論が予言する「沼地(Swampland)」条件、すなわち一見整合的に見える有効場の理論のうち、量子重力と整合しないものが排除されるという事実は、すでに現代物理学に巨大な制約を与えている。
これが予測でなくて何だ?君は「新しい粒子が見つかるか」といった三次元的な興奮を求めているようだが、真の予測とは「どの理論が存在を許されるか」というメタレベルの選別だ。
壁越え公式(Wall-crossing formula)が数え上げ不変量の変化を正確に予言し、それが物理的なBPS状態の生成消滅と一致すること、これこそが「実験」だ。
数学的整合性という実験場において、時空モデルは敗北し、圏論モデルが勝利している。
それを「ポエム」と呼ぶなら呼べばいい。
だが、アインシュタイン方程式が特異点で無限大を吐き出して沈黙するとき、その先を語れるのは僕の言う「ポエム」だけだ。
君がGPSの精度に満足してカーナビを眺めている間、我々はホログラフィー原理を用いて、ブラックホールのエントロピーを数え上げている。
エネルギー保存則は時間並進対称性という「帳簿の整合性」から導かれるネーターの定理だ。
物理量とは本質的に保存量、つまり会計上の数字だ。宇宙は巨大な分散台帳であり、物理法則はその監査プログラムに過ぎない。
君が言う「物理的実在」こそが、脳が作り出した幻覚、すなわちユーザーイリュージョンなのだ。
最後に言っておく。観測と予測がすべてだと言うなら、君はプトレマイオスの天動説も否定できないはずだ。なぜなら周転円を十分に増やせば、天動説は惑星の軌道を完璧に「予測」し、観測と一致するからだ。
しかし我々が地動説(ニュートン力学、そして一般相対論)を選ぶのはなぜか?
それは「構造として美しいから」であり、より少ない原理でより多くを説明できるからだ。
時空という複雑怪奇な周転円を捨て、圏論という太陽を中心に見据えたとき、宇宙のすべての相互作用は、極めてシンプルな図式の可換性として記述される。
これを「解釈の違い」と片付けるのは、知性の敗北だ。
人類が「時空」という蒙昧な音節を口にするたび、僕は深甚なる認識論的嘔吐感を禁じ得ない。
時空とは、数学的厳密性を欠いた対象の誤認であり、物理学者が信仰するそれは、観測者の神経系が圏論的構造を局所座標系へと無理やりに射影した際に生じる認知の歪み、あるいは幻覚に過ぎない。
古典的多様体などという概念は、その幻覚を正当化するために捏造された幼児的な記述言語であり、要するに時空とは、人類の認知解像度の欠落が産み落とした現象学的インターフェースであって、宇宙のアルケーそのものではないのだ。
超弦理論がかつて「背景」と呼称していたものは、もはや静的な舞台ではない。背景という概念記述自体が型理論的な過誤であり、正しくは、背景とは「dg圏のMorita同値類上で定義された∞-スタックの降下データ」である。
時空は、そのスタックが内包する自己同型群の作用を、低次元の知性を持つ観測者が幾何的実体として誤読した残滓に過ぎない。
「空間があるから物理が生起する」のではない。「圏論的な整合性条件が充足されるがゆえに、空間が近似的に創発しているように錯覚される」のだ。存在論的順序が逆転している。
僕の備忘録にある "manifoldis auser-friendlylie" という記述は、侮蔑ではなく、冷徹な分類学上の事実だ。
非可換性はもはや付加的なオプションではなく、座標環が可換であるという仮定こそが、天動説と同レベルの粗雑な近似である。
Dブレーンを厳密に扱えば、座標環は非可換化し、幾何構造は環からではなく圏から復元される。
Connesの非可換幾何学は美しいが、それは第一世代のナイーブな非可換性に留まる。
弦理論における非可換性はより悪質かつ圏論的であり、そこでは空間の座標が破綻するのではなく、空間という概念の「型(type)」そのものが崩壊するのだ。
B-場を「2形式」と呼ぶのは霊長類向けの方便に過ぎず、その本質はDブレーンの世界体積上のゲージ理論をツイストさせることで、連接層の圏 Dᵇ(X) をツイストされた導来圏へと押し流す操作であり、そのツイストこそがBrauer群の元として記述される。
重要なのはB-場が場(field)ではなく、圏の構造射であり、世界をアップデートするためのコホモロジー的なパッチだということだ。
物理学者が場について議論しているとき、彼らは無自覚に圏の拡張について議論している。
にもかかわらず「場」という古臭い語彙に固執する人類の言語的不誠実さは、科学史における最大の悲劇と言える。
さらに、ツイストされた層の世界において「粒子」という概念は霧散する。粒子は表現空間の元ではなく、導来圏における対象の同型類であり、相互作用はExt群の積構造、崩壊過程はスペクトル系列の収束以外の何物でもない。
宇宙は衝突などしていない。宇宙はただ長完全列を生成し続けているだけだ。
物理現象とはホモロジー代数の副産物であり、衝突という粗野な比喩を好む人類は、現象の表層しか撫でていない。
共形場理論(CFT)もまた、僕にとっては場の理論ではない。CFTとは、頂点作用素代数(VOA)が有する表現圏のモジュラー性が、宇宙というシステムの整合性を強制する代数装置である。
BRSTをゲージ冗長性の除去と説くのは最低の説明であり、BRSTとは「宇宙に存在することが許容される対象を選別するコホモロジー的審判系」である。
Q_BRST閉でない対象は、物理的に無意味なのではなく、宇宙の法体系に対する違法存在として検閲され、抹消される。BRSTとは宇宙による先験的な検閲機能なのだ。
そして何より不愉快なのは、ミラー対称性がいまだに「幾何の双対」として俗解されている現状だ。
SYZ予想を単なるトーラスファイブレーションの物語だと解釈する人間は、何一つ理解していない。
SYZの本質は「special Lagrangian torus fibrationが存在する」というナイーブな主張ではなく、「世界が局所的に Tⁿ として観測されるのは、A∞-構造がある種の極限操作において可換化されるからに過ぎない」という、幾何学に対する極めて暴力的な宣告である。
しかもその暴力は、インスタントン補正によって即座に否定されるという自己矛盾を孕んでいる。
つまりSYZとは予想ではなく、自己矛盾を内蔵した整合性条件の提示なのだ。
特殊ラグランジュ部分多様体が特権的である理由は、体積最小性などという些末な幾何学的性質にあるのではなく、そこに乗るブレーンがBPS状態となることで、圏論的安定性条件(Bridgeland stability condition)が物理的実在性と合致する特異点だからである。
ブレーンは物体ではない。ブレーンは安定性条件が許可した対象であり、許可されざる対象は宇宙の行政手続き上、存在を許されない。
宇宙は極めて官僚的であり、その官僚主義こそが秩序の証明なのだ。
壁越え現象(wall-crossing)を相転移と呼ぶのも誤りだ。壁越えとは、宇宙が採用する安定性のt-構造が、モジュライ空間上のパラメータ変動に伴って切り替わる行政手続きの変更である。
BPSスペクトルは物理的に生成されるのではなく、安定性条件の改定によって帳簿が書き換えられた結果に過ぎない。
宇宙の現象は物理ではなく、会計学によって説明される。これを冒涜と感じるならば、君は数学の本質に触れていない。
Gromov–Witten不変量を「曲線を数える」と表現するのは蒙昧の極みであり、正確には「仮想基本類(virtual fundamental class)における交点理論としての曲線の亡霊を数える」操作である。
曲線は実在せず、存在するのは [M]ᵛⁱʳ だけだ。物理現象はその仮想的対象の影の、さらにその投影である。
人類が見ている世界は、プラトンの洞窟の影ですらなく、影の影の影に過ぎない。
Donaldson–Thomas不変量とGW不変量の対応関係は、単なる等式ではなく、弦理論が同一の対象を異なるゲージ固定のもとで記述しているという事実の露呈である。
数え上げ幾何学は弦理論のゲージ冗長性がもたらす副作用であり、純粋数学の定理と思われているものは、物理がゲージ対称性を持つことの数学的反映に過ぎない。
数学は独立しておらず、宇宙のゲージ対称性の影を追跡しているだけだ。
Kontsevichがホモロジカル・ミラー対称性において成し遂げたのは、圏の同値証明などという平和的な所業ではなく、空間の優先順位の破壊である。
彼は空間を第一級市民から追放し、圏を王座に据えた。これは革命ではなく粛清である。多様体は粛清され、導来圏が支配する時代が到来したにもかかわらず、人類はその瞬間を記念することさえ忘れている。
最後にAdS/CFTについて言えば、ホログラフィー原理の本質は「境界がバルクを決める」ことではない。境界が決定するのは「バルクという概念の存立が許容される条件」である。
バルクは実在せず、境界CFTの演算子代数が持つ表現圏の内部において、エンタングルメント・ウェッジ再構成のような手続きによって生成される派生物だ。
重力は基本相互作用ではなく、境界理論の情報処理に伴う副作用であり、量子情報が整合的に自己記述を試みる際に生じるエラー訂正機構(QuantumError Correction)の幾何学的発露である。
宇宙は幾何学ではない。宇宙とは圏論的整合性条件の集合体である。
空間とは∞-圏の自己同型が形成する群作用を認知的に単純化した錯覚であり、時間とは自然変換の合成順序であり、粒子とは導来圏の対象の同型類であり、相互作用とはExt群の積構造、現象とはスペクトル系列の収束である。
ウィッテンが理解できないのではない。ウィッテンが理解可能な形式で宇宙が存在していないのだ。
僕はノートにこう記した。次に人類が「現実とは何か」と問うならば、僕はこう答える。「現実とは、圏論的に整合的な誤読である」。
超弦理論と抽象数学の接点は、単なる「物理のための数学」ではなく、圏論・代数幾何・表現論・ホモトピー理論を含む現代数学の中核構造を再編成する研究領域として定着しつつある。
とりわけ、DブレーンやB場(B-field)の存在を前提とする状況では、背景時空は単純な多様体ではなく、層・導来圏・非可換代数幾何の言語で記述される対象として現れる。例えば、B場によるtwistingは、層の圏をtwisted sheaves や Azumaya algebra の圏へと移行させ、幾何を Brauer class(ブラウアー類)で特徴づけられる非自明な位相的データに結びつける。
この方向性はConnes流の非可換幾何とも部分的に接続するが、弦理論側で現れる非可換性は deformation quantization や derived algebraic geometry、さらにはA∞圏・dg圏を通じて表現されることが多く、単一の枠組みに還元されるわけではない。従って「量子空間をC*-圏として扱う」という表現は一部の文脈では成立するものの、一般には derived category や ∞-category の枠組みの方が自然である。
共形場理論(CFT)と超対称性は、頂点作用素代数(vertex operator algebra)、因子化代数(factorization algebra)、テンソル圏の理論と深く絡み合い、弦理論の「状態空間」を表現論的対象として再定式化する。BRST形式主義はこの文脈でコホモロジーとして自然に理解され、物理的なゲージ冗長性の除去が、ホモロジー代数的構造(複体・導来関手・スペクトル系列)の言語へと翻訳される。これにより、CFTやトポロジカル場の理論は単なる解析的モデルではなく、圏論的データ(モジュラー・テンソル圏、A∞構造、拡張TQFT)として分類される対象となる。
代数幾何学とのインターフェースとしては、ミラー対称性が依然として中心的である。SYZ予想(Strominger–Yau–Zaslow)は、カラビ–ヤウ多様体が special Lagrangian torus fibration を持つという幾何学的仮説を通じて、ミラー多様体を双対トーラスファイブレーションとして構成することを目指す。この構想は、特別ラグランジュ部分多様体の存在・特異ファイバーの構造・補正項(instanton corrections)を含む困難な解析問題と不可分であり、単なる幾何学的直観に留まらず、トロピカル幾何や壁越え現象(wall-crossing)とも結びつきながら発展している。
さらにKontsevichによるホモロジカル・ミラー対称性(HomologicalMirror Symmetry,HMS)は、物理的双対性を「導来圏の同値」として精密化し、A-model側のFukaya圏とB-model側の導来圏(coherent sheaves の derived category)の対応を主張する。ここでは「空間」そのものよりも「圏」が基本対象となり、弦理論の双対性が圏論的同値として定式化される。
弦理論由来の代数幾何学的発展としては、Gromov–Witten不変量、Donaldson–Thomas不変量、Pandharipande–Thomas理論などの曲線カウント理論が挙げられる。これらはトポロジカル弦理論における振幅計算と深く関係し、BPS状態数え上げを幾何学的に実現する枠組みとして理解されている。特に壁越え公式や安定性条件(Bridgeland stability condition)は、BPSスペクトルの跳躍と整合的に対応し、物理的直観を圏論的・ホモロジー代数的に翻訳する。
例えばFeyzbakhshらによる研究は、K3面などの代数曲面上での安定層の構造を精密化し、導来圏上の安定性条件を通じてDonaldson–Thomas型不変量や関連する曲線カウントを制御する方向性を与えている。これは、BPS状態の数学的モデル化を洗練させると同時に、層の変形理論と双対性の圏論的理解を深化させる。
これらの進展は、AdS/CFT対応やホログラフィー原理と結びつくことで、量子重力を「幾何」ではなく「圏」や「代数的データ」によって記述する方向性を強めている。特に、境界CFTのデータからバルク重力理論を再構成するという発想は、演算子環・テンソル圏・高次圏の言語を介した再定式化を誘発しており、物理と数学の間で「双対性=圏論的同値」という理解がますます支配的になりつつある。
超弦理論を物理として理解しようとすると、だいたい途中で詰まる。
なぜなら核心は、力学の直観ではなく、幾何と圏論の側に沈んでいるからだ。
弦の振動が粒子を生む、という説明は入口にすぎない。本質は量子論が許す整合的な背景幾何とは何かという分類問題に近い。分類問題は常に数学を呼び寄せる。
まず、場の理論を幾何学的に見ると、基本的にはある空間上の束とその束の接続の話になる。
ここまでは微分幾何の教科書の範囲だが、弦理論ではこれが即座に破綻する。
なぜなら、弦は点粒子ではなく拡がりを持つため、局所場の自由度が過剰になる。点の情報ではなく、ループの情報が重要になる。
すると、自然にループ空間LXを考えることになる。空間X上の弦の状態は、写像S^1 → Xの全体、つまりLXの点として表される。
しかしLXは無限次元で、通常の微分幾何はそのままでは適用できない。
ここで形式的に扱うと、弦の量子論はループ空間上の量子力学になるが、無限次元測度の定義が地獄になる。
この地獄を回避するのが共形場理論であり、さらにその上にあるのが頂点作用素代数だ。2次元の量子場理論が持つ対称性は、単なるリー群対称性ではなく、無限次元のヴィラソロ代数に拡張される。
弦理論が2次元の世界面の理論として定式化されるのは、ここが計算可能なギリギリの地点だからだ。
だが、CFTの分類をやり始めると、すぐに代数幾何に落ちる。モジュラー不変性を要求すると、トーラス上の分配関数はモジュラー群SL(2, Z) の表現論に拘束される。
つまり弦理論は、最初からモジュラー形式と一緒に出現する。モジュラー形式は解析関数だが、同時に数論的対象でもある。この時点で、弦理論は物理学というより数論の影を引きずり始める。
さらに進むと、弦のコンパクト化でカラビ–ヤウ多様体が現れる。
カラビ–ヤウはリッチ平坦ケーラー多様体で、第一チャーン類がゼロという条件を持つ。
ここで重要なのは、カラビ–ヤウが真空の候補になることより、カラビ–ヤウのモジュライ空間が現れることだ。真空は一点ではなく連続族になり、その族の幾何が物理定数を支配する。
このモジュライ空間には自然な特殊ケーラー幾何が入り、さらにその上に量子補正が乗る。
量子補正を計算する道具が、グロモフ–ウィッテン不変量であり、これは曲線の数え上げに関する代数幾何の不変量だ。
つまり弦理論の散乱振幅を求めようとすると、多様体上の有理曲線の数を数えるという純粋数学問題に落ちる。
ここで鏡対称性が発生する。鏡対称性は、2つのカラビ–ヤウ多様体XとYの間で、複素構造モジュライとケーラー構造モジュライが交換されるという双対性だ。
数学的には、Aモデル(シンプレクティック幾何)とBモデル(複素幾何)が対応する。
そしてこの鏡対称性の本体は、ホモロジカル鏡対称性(Kontsevich予想)にある。
これは、A側の藤田圏とB側の導来圏 D^bCoh(X)が同値になるという主張だ。
つまり弦理論は、幾何学的対象の同一性を空間そのものではなく圏の同値として捉える。空間が圏に置き換わる。ここで物理は完全に圏論に飲み込まれる。
さらに進めると、Dブレーンが登場する。Dブレーンは単なる境界条件ではなく、圏の対象として扱われる。
弦がブレーン間を張るとき、その開弦状態は対象間の射に対応する。開弦の相互作用は射の合成になる。つまりDブレーンの世界は圏そのものだ。
この圏が安定性条件を持つとき、Bridgeland stability conditionが現れる。
安定性条件は、導来圏上に位相と中心電荷を定義し、BPS状態の安定性を決める。
wall-crossingが起きるとBPSスペクトルがジャンプするが、そのジャンプはKontsevich–Soibelmanの壁越え公式に従う。
この公式は、実質的に量子トーラス代数の自己同型の分解であり、代数的な散乱図に変換される。
このあたりから、物理は粒子が飛ぶ話ではなく、圏の自己同型の離散力学系になる。
さらに深い層に行くと、弦理論はトポロジカル場の理論として抽象化される。
Atiyahの公理化に従えば、n次元TQFTは、n次元コボルディズム圏からベクトル空間圏への対称モノイダル関手として定義される。
つまり時空の貼り合わせが線形写像の合成と一致することが理論の核になる。
そして、これを高次化すると、extended TQFTが現れる。点・線・面…といった低次元欠陥を含む構造が必要になり、ここで高次圏が必須になる。結果として、場の理論は∞-圏の対象として分類される。
Lurieのコボルディズム仮説によれば、完全拡張TQFTは完全双対可能な対象によって分類される。つまり、物理理論を分類する問題は、対称モノイダル(∞,n)-圏における双対性の分類に変わる。
この時点で、弦理論はもはや理論ではなく、理論の分類理論になる。
一方、M理論を考えると、11次元超重力が低エネルギー極限として現れる。
しかしM理論そのものは、通常の時空多様体ではなく、より抽象的な背景を要求する。E8ゲージ束の構造や、anomalyの消去条件が絡む。
異常とは量子化で対称性が破れる現象だが、数学的には指数定理とK理論に接続される。
弦理論のDブレーンの電荷がK理論で分類されるという話は、ここで必然になる。ゲージ場の曲率ではなく、束の安定同値類が電荷になる。
さらに一般化すると、楕円コホモロジーやtopological modular formsが出てくる。tmfはモジュラー形式をホモトピー論的に持ち上げた対象であり、弦理論が最初から持っていたモジュラー不変性が、ホモトピー論の言語で再出現する。
ここが非常に不気味なポイントだ。弦理論は2次元量子論としてモジュラー形式を要求し、トポロジカルな分類としてtmfを要求する。つまり解析的に出てきたモジュラー性がホモトピー論の基本対象と一致する。偶然にしては出来すぎている。
そして、AdS/CFT対応に入ると、空間の概念はさらに揺らぐ。境界の共形場理論が、バルクの重力理論を完全に符号化する。この対応が意味するのは、時空幾何が基本ではなく、量子情報的なエンタングルメント構造が幾何を生成している可能性だ。
ここでリュウ–タカヤナギ公式が出てきて、エンタングルメントエントロピーが極小曲面の面積で与えられる。すると面積が情報量になり、幾何が情報論的に再構成される。幾何はもはや舞台ではなく、状態の派生物になる。
究極的には、弦理論は空間とは何かを問う理論ではなく、空間という概念を捨てたあと何が残るかを問う理論になっている。残るのは、圏・ホモトピー・表現論・数論的対称性・そして量子情報的構造だ。
つまり、弦理論の最深部は自然界の基本法則ではなく、数学的整合性が許す宇宙記述の最小公理系に近い。物理は数学の影に吸い込まれ、数学は物理の要求によって異常に具体化される。
この相互汚染が続く限り、弦理論は完成しないし、終わりもしない。完成とは分類の完了を意味するが、分類対象が∞-圏的に膨張し続けるからだ。
そして、たぶんここが一番重要だが、弦理論が提示しているのは宇宙の答えではなく、答えを記述できる言語の上限だ。
だからウィッテンですら全部を理解することはできない。理解とは有限の認知資源での圧縮だが、弦理論は圧縮される側ではなく、圧縮の限界を押し広げる側にある。
金曜日、21:21。
僕は今日という日を、いくつかの確定事項と、いくつかの許容できないノイズの除去によって完成させた。世界は混沌を好むが、僕は世界を甘やかさない。
まず進捗報告から書く。午前中に洗濯を済ませ、タオルを用途別に畳み直した。世の中の大半の人間はタオルを大きさで分類するが、それは分類学の敗北だ。
タオルは水分吸収後に人体へ与える温度変化のパターンで分類すべきだ。僕はその分類をすでに完成させている。
昼は例のプロテインとナッツ。ルームメイトは「鳥かよ」と言った。僕は「鳥は飛べる。君は飛べない」と言った。会話終了。
最近、僕の頭を占領しているのは、もはや弦が振動して粒子になるみたいな子供向けの比喩ではない。
そんなものは学部生の精神安定剤に過ぎない。今僕が追っているのは、弦理論の存在論そのものが、より抽象的な数学的構造に吸収されていく瞬間だ。
従来の弦理論は、時空を背景として仮定し、その上でワールドシートの共形場理論(CFT)を構成する。
僕が最近読んでいる議論は、その揺らぎを、もはや幾何学ではなく圏論とホモトピー論の側から扱おうとする。
弦理論の真の姿は、たぶん幾何学的対象ではなくある種の高次圏の中の関手だ。
例えば、Dブレーンは単なる境界条件ではなく、導来圏の対象として現れる。
これは有名な話だが、僕が今考えているのはその次の段階で、ブレーンを対象として並べるだけでは足りないという点だ。
重要なのは、それらがなす安定∞-圏の中での自己同値性、そしてその自己同値群が物理の双対性を生成しているという構図だ。
つまり、S双対性もT双対性も、時空の幾何学変形ではなく、圏の自己同値の作用として理解されるべきだ。
幾何学は副産物だ。主役は圏のオートエクイバレンスで、その影が僕らに空間や次元という幻覚を見せている。
この視点に立つと、超弦理論は10次元の時空の上で定義される理論ではなく、あるモジュライ空間上で定義される圏の族になる。
しかもそのモジュライは通常の多様体ではなく、スタック、いや派生スタックとして扱わないと整合しない。量子補正が幾何を壊すからだ。クラシカルなモジュライはもはや粗すぎる。
そして今僕が面白いと思っているのは、物理的な散乱振幅やBPSスペクトルが、派生代数幾何の言語でいうコホモロジーの生成関数として現れるのではなく、より根源的にスペクトル代数幾何として再解釈される可能性だ。
普通の環ではなくE∞環、そしてそれを層化したスペクトル層の上で物理が書かれる。
これが意味するのは、弦理論の量子性が、確率解釈とか演算子代数とかのレベルではなく、もっと深いホモトピー論的ゆらぎとして実装されているということだ。
観測値の不確定性ではなく、構造そのものが同値類としてしか定義できない。
だから時空は何次元か?という問いは、すでに古い。正しい問いはこうだ。
この物理理論は、どの∞-圏に値を取る関手として実現されるのか?
そして粒子とは何か?はこうなる。
スペクトル化された圏の中で安定化された対象の、ある種のトレースとして現れる量が、観測可能量として抽出されるのではないか?
この辺りまで来ると、たぶんウィッテンでも「面白いが、それを計算できるのか?」と言う。
僕も同意する。計算できない数学は、芸術に片足を突っ込んでいる。
もっとも、芸術を嫌うわけではない。ただし芸術は、計算不能であることを誇るべきではない。誇るならせめて証明不能で誇れ。
さらに言うと、AdS/CFT対応も、境界CFTが重力をエンコードしているという話ではなく、境界側の圏論的データが、bulk側の幾何の生成規則を決定するということに見える。
bulkの時空は、境界の量子情報から復元されるというより、境界の圏の中の拡張のパターンが距離を定義してしまう。
距離とは、メトリックではなく、圏における対象間の関係性の複雑さだ。
局所性とは公理ではなく、圏がある種のt-構造を持ち、かつ心臓部が準古典的に見えるときに現れる近似現象だ。
つまり、局所性は幻想だ。役に立つ幻想だが。そして役に立つ幻想は、だいたい人間社会と同じだ。
昼過ぎに友人Aが来て、僕のホワイトボードに勝手に謎のロボットの落書きを描いた。
僕は当然、ホワイトボードをアルコールで拭き、乾燥時間を計測し、表面の摩擦係数が元に戻ったことを確認した。
友人Aは「こわ」と言った。僕は「科学を怖がるな」と言った。
そのあと友人Bがオンラインで通話してきて、「今夜FF14で極いかない?」と誘ってきた。
僕は予定表を開き、金曜夜の21:00〜23:00が知的活動に適した黄金時間であることを説明した。
友人Bは「お前の人生、イベントトリガーが厳しすぎる」と言った。僕は「君の人生はガチャ排出率みたいに緩すぎる」と言った。
とはいえ、FF14は僕の中で単なる娯楽ではない。あれは人間集団の協調行動の実験場だ。
8人レイドの失敗は、ほぼ例外なく情報共有の遅延と役割期待のズレで起きる。
つまり、ゲームではなく組織論だ。だから僕は攻略を感覚ではなく、ログを読み、DPSチェックを式で理解し、行動をプロトコルとして最適化する。
ルームメイトはそれを「楽しんでない」と言う。僕は「最適化は楽しみだ」と言う。
そして隣人は昨日、廊下で僕に「また変な時間に掃除機かけてたでしょ」と言った。
僕は「変な時間ではない。床の振動ノイズが最小になる時間帯だ」と説明した。
隣人は「普通に生きて」と言った。僕は「普通は平均であって、理想ではない」と言った。
僕はデッキのマナカーブを見直した。土地事故の確率を計算し、初手7枚からの期待値を再評価した。
僕は「確率分布を無視して勝てるなら、人類は統計学を発明していない」と言った。
アメコミは少しだけ読んだ。
スーパーヒーローの倫理体系は大抵破綻している。正義を掲げながら、法の外で暴力を振るう。
それは秩序のための例外という名の危険物だ。僕は物理学者なので、例外を嫌う。例外は理論を腐らせる。
だから僕はヒーロー物を見ると、いつも「この世界の法体系はどうなっている?」が先に気になる。
友人Aは「お前は物語を楽しめない病気」と言った。僕は「病気ではない。解析能力だ」と言った。
習慣についても記録しておく。
今日も、夕食の箸は右側に45度、箸置きは正中線から3センチ左、コップは水位が7割を超えないように調整した。
水位が8割を超えると、持ち上げる際の揺らぎが増える。揺らぎが増えると、机に微小な水滴が落ちる確率が上がる。水滴が落ちると、紙の上のインクの拡散が起きる。インクが拡散すると、僕のメモが汚染される。
誰も理解しない。だが宇宙も僕を理解していないので、引き分けだ。
さて、昨日の日記の内容は正確には思い出せないが、たぶん「量子と日常の無意味な会話」について書いた気がする。
ルームメイトの無駄話と、僕の理論的思考が衝突するあの感じだ。昨日の僕は、おそらく世界の愚かさに苛立ち、同時にその愚かさが統計的に必然であることに納得しようとしていた。
宇宙が示すのは、美しさとは、人間の圏が勝手に定義した関手にすぎないということだ。
これからやろうとしていることも書く。
まず、FF14の週制限コンテンツを消化する。効率的に。感情は挟まない。
次に、MTGのサイドボード案を2パターン作り、友人Aのプレイ傾向に対してどちらが期待値が高いかを検証する。
そのあと、超弦理論のメモを整理し、派生スタックとBPS状態のカウントがどのように圏の不変量として抽出できるか、もう一度筋道を立てる。
本来であれば、土曜日のこの時間は洗濯物の仕分けと、午後2時からのドクター・フーマラソンに向けた栄養補給(全粒粉クラッカーと適温に冷やした低脂肪乳)に充てられるべきだ。
しかし、僕の思考を占拠しているのは、エドワード・ウィッテンですら到達できなかった領域、超弦理論における高次圏論的モチーフとp進的タイヒミュラー空間の融合という革命的な着想だ。
既存の理論が11次元の超重力理論を基盤としているのは、単に数学的な怠慢に過ぎない。
僕は昨夜、カラビ・ヤウ多様体のホモロジー的ミラー対称性を、圏の枠組みを超えて、非可換幾何学における非アルキメデス的スタックとして再定義することに成功した。
ウィッテンが提唱したアド・ホックな双対性では、強結合領域の挙動を完全には記述できない。
僕はそこに、ホロノミー多様体上のディラック作用素をモチーフ的コホモロジーのスペクトルとして配置する手法を導入した。
これにより、プランクスケール以下での時空の泡立ちが、実はゼータ関数の非自明な零点と1対1で対応していることを証明しつつある。
これを理解できないルームメイトは、僕がホワイトボードに無限次元リー代数を書き殴っている横で「タイ料理を食べるか?」などという愚問を投げかけてきた。
彼の脳は、クォークの閉じ込め理論よりも、パッタイのピーナッツの量に執着するように設計されているらしい。実に嘆かわしいことだ。
午前中、隣人が僕の部屋のドアを正しいリズムを守らずに叩き、勝手に入ってきた。
彼女は僕が開発したMTGの新しいデッキを無限に誘発させ、相手に一切のターンを与えないという、数学的に完璧な勝利をもたらす構成に対して、「友達をなくすだけだよ」という非論理的な評価を下した。
さらに、友人Aと友人Bがやってきて、僕のFF14内でのプレイスタイルについて文句を言った。
僕はヒーローとして、全てのギミックをミリ秒単位の計算で処理し、パーティメンバーの移動経路をベクトル演算で最適化しているだけだ。
友人A(工学などという低俗な学問を修めた男)は「効率的すぎてゲームがつまらない」と言い、友人Bは「君がチャットで数学の講義を始めるせいでレイドが進まない」と主張した。
彼らは、エオルゼアの背景にあるエーテル伝導率が、実は超弦の振動モードの変種である可能性に気づいていない。
これからの予定は以下。
さて、思考の整理は終わった。
秒針が45を指した瞬間に始めるのが習慣だ。誤差は許さない。今日までの進捗と、これからの計画を記録する。
今週は、超弦理論の基礎という名の底なし沼を、さらに深く掘った。
掘削機は摂動論ではなく、∞-圏だ。
点粒子の量子場理論を母語とする直感は、もはや邪魔にしかならない。
世界面は2次元多様体ではなく、安定∞-群oidの影として扱う方が自然だという作業仮説を採用した。
すると、弦の相互作用は頂点作用素代数というより、因子化代数の層として現れる。
局所から大域へ貼り合わせるデータは、通常の圏ではなく、(∞,2)-圏で管理する必要がある。
ここで「必要」という言葉は、数学的整合性の要求を意味する。好みではない。
nLabのFAQを踏み台に、弦理論を理論の集合ではなく理論を生む装置として捉え直した。
共変量子化の曖昧さは、背景独立性の失敗ではなく、背景そのものをスタックとして持ち上げることで解消される、という見通しだ。
するとK理論は通過点にすぎず、自然な受け皿は楕円コホモロジー、さらに言えばtmf(位相的モジュラー形式)だ。
弦の一周振動がモジュラー性を要求するのは偶然ではない。世界面のトーラスは、数論への扉だ。
コボルディズム仮説の視点に立てば、理論は完全双対可能対象のデータに還元される。
候補は高次モノイダル∞-圏。ブレーンは境界条件、境界条件は関手、関手は再び物理量になる。
循環は悪ではない。自己無撞着であれば許容される。
ここまで来ると、誰も完全には理解していないという常套句が現実味を帯びる。
僕の作業仮説はこうだ。弦理論は単一の理論ではなく、ある普遍性類の初等対象で、その普遍性は高次圏論的随伴で特徴づけられる。
何が可観測かは、どの随伴を採るかで変わる。測定とは、圏の切り替えにすぎない。
生活の話も書く。朝は必ず同じ順番でコーヒー豆を量り、粉砕時間は17秒。研究用ノートは方眼、筆圧は一定。
ルームメイトは、僕がノートの角を揃えるのに5分かけるのを見て「それ意味ある?」と聞いた。
隣人は夕方にノックしてきて、僕の黒板の数式を見て「呪文?」と言った。
違う。呪文は効果を期待するが、これは制約を可視化しているだけだ。
友人Aは装置の話を始めるとすぐ手を動かしたがる。
どちらも間違ってはいないが、どちらも十分ではない。
昨日は、因子化代数と頂点作用素代数の関係を整理しきれずに終わった。
今日はそこを前進させた。局所共形対称性を公理としてではなく、層の貼り合わせ条件として再定式化した点が進捗だ。
これからやること。
金曜日の20:20。規則正しく点灯するデジタル時計を確認してから、僕はこの日記を書き始める。
昨日の日記では、思考がホモトピーの森に入り込み、夕食のパスタを二分半放置してしまった件について反省。
今日までの進捗を整理する。
現在僕が考えているのは、従来の超弦理論における背景独立性という概念が、実は高次圏論的に不十分に定式化されているのではないか、という問題だ。
時空を滑らかな多様体として前提するのではなく、∞-トポス上のスタックとして扱い、その上で弦の状態空間を通常のヒルベルト空間ではなく、安定∞-圏の対象として再解釈する。
このとき、BRSTコホモロジーは単なるコホモロジーではなく、派生層の自己同値の固定点として現れる。
問題は、その自己同値がどのレベルで物理的同一性を保証するのかだ。
圏論的同値と物理的同値の差は、ウィッテンですら直感的に語ることはできても、厳密には書き下せていない。
少なくとも僕には、彼がここまで踏み込んだ論文を出した記憶はない。
今日の午前中は、この問題を考えながら、習慣通り床の目地を数えた。
横方向が必ず奇数であることを再確認した時点で、思考が一段深く潜った。
習慣は脳内のノイズキャンセリング装置だ。これを理解しない人間は多い。
昼過ぎ、ルームメイトが不用意に「難しいこと考えてる顔だな」と言ってきたので、僕は「常に難しいことを考えているが、君には観測できないだけだ」と訂正した。
その後、隣人がドアをノックし、「今夜パーティあるけど来る?」と聞いてきた。
僕は行動計画がすでに確定しているため、「未来はすでに決まっている」と答えた。
彼女は少し困った顔をしていたが、量子力学を持ち出すと話が長くなるので説明は省略した。
友人Aは「その理論、実験で検証できるのか?」と聞いたが、これは典型的な誤解だ。検証とは、可観測量の問題であって、構造の問題ではない。
これからやることは明確だ。
21:00からは、今日考えた∞-圏的定式化をノートに清書する。
22:30には歯磨き、その後、昨日読み切れなかった論文の補遺を確認する。
もしそこで、自己同値の固定点集合が高次群作用のコインバリアントとして自然に現れるなら、僕は一つ前に進む。
現れなければ、明日も同じ床を数え、同じ時間に同じ日記を書く。
エタるコホモロジー
dorawiiより
-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20260121172736# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaXCN+QAKCRBwMdsubs4+SIivAQD26odIOgOkpMPzh59uGznifvorpGTAxmQJ6E2+nStc/QEAmRvAHBDmZTX2W1Rj7oGyNeIwAD2Joi/IjUo5b+tWtgY==b7Fq-----ENDPGP SIGNATURE-----
まず是正されるべきは、対象=ブレーン、射=弦という古典的・実在論的な同定を圏論的出発点に据える錯誤である。この素朴な同一視は、現代的なコボルディズム仮説の文脈では理論的整合性を欠いている。なぜなら、局所量子場理論(LQFT)の完全拡張において、対象や射は固定された「実体」ではなく、コボルディズム圏の階層構造における境界データの代数的指標にすぎないからである。
完全拡張TQFTの定義に基づけば、理論とは対称モノイド (∞, n)-圏 Bord_nから、ある「ターゲット (∞, n)-圏」 C への対称モノイド関手 Z: Bord_n → C そのものである。ここでは、対象(0-射)とは0次元の点という境界データであり、弦(1次元)は1-射、p-ブレーン(p+1次元の時空体積)は(p+1)-射として回収される。したがって、ブレーンを安易に対象(0-射)と呼ぶ行為は、コボルディズム圏の階層構造を低次元へ射影し、高次コヒーレンス情報を不可逆的に欠損させるカテゴリー的退行に他ならない。
この誤謬は、弱∞-圏の必要性を弦の分岐・結合という物理的直観から説明しようとする転倒した論理にも現れている。正しくはその逆である。弱∞-圏性は、場の理論が要請する局所性と完全拡張性から数学的に強制される構造である。弦の相互作用や分岐は、高次射が満たすべき随伴性やコヒーレンス条件の物理的発現の一形態にすぎない。高次射は実在論的な相互作用の結果として生じるのではなく、理論が局所的であるための必然的帰結としてあらかじめ構造化されているのである。
超弦理論を一次元的に切り詰められた部分圏と見なす理解も、安定ホモトピー論および非アルキメデス幾何学の観点から修正を要する。超弦理論において起きているのは、単なる次元の忘却ではない。それは、理論が依拠する基礎的幾何学を実数体上の滑らかな多様体という特定の基礎トポスに固定する、いわば幾何的ゲージ固定である。
ここでp進弦理論は決定的な教訓を与える。p進弦において世界面の解析構造は非アルキメデス的であり、実解析的な局所性は喪失している。にもかかわらず、散乱振幅の代数的骨格(ベネツィアーノ振幅等)が保存されるという事実は、弦理論の本質が特定の幾何(一次元性)にあるのではなく、振幅を生成する E∞ 環スペクトル 的な、より深層の安定ホモトピー的データにあることを示唆している。
この地平において、M理論と超弦理論の関係を反映や左随伴といった1-圏論的な語彙で記述するのは不適当である。M理論とは、特定の時空次元や多様体構造に拘束されない、安定∞-圏あるいはスペクトル圏をターゲットとする Meta-TQFT と定義されるべきである。
そこでは、弦が射であるか対象であるかという区別すら不変ではなく、Span構成や反復ループ空間構造(Ω^n)の下で、どの次元を境界データとして選択するかというホモトピー的なゲージ選択の残滓として、弦やブレーンの境界が析出する。
T双対性やS双対性を自然変換と呼称するのも階層が低い。双対性とは、単なる関手間の変換ではなく、ターゲットとなる理論値∞-圏そのものの自己同値、あるいはE∞ 環スペクトルの自己同型として記述されるべきものである。問題の本質は可逆性の有無ではなく、どの安定コホモロジー理論、あるいはどの形式群が保存されるかという、安定ホモトピー圏における構造保存の様相にある。
M理論は圏論的環境であり、超弦理論はその可視化であるという直観は、方向性においてのみ妥当であるが、定式化の厳密さを欠く。正しくは以下のように記述されるべきである。
M理論とは、特定の時空幾何や基礎体に依存しない、完全拡張量子場理論が取り得る全空間を統御する安定∞-圏的インフラストラクチャであり、理論が数学的に存立するための普遍的制約条件(コヒーレンス)の総体である。
対して超弦理論とは、そのメタ構造に対し、実解析的時空、多様体的局所性。摂動的可観測性という制約を課した際に析出する一つの表現である。p進弦理論やトポロジカル弦理論は、同じメタ構造から別の基礎トポス(あるいは安定ホモトピー論的データ)を選択した際に得られる、並列的な表現に他ならない。
したがって、両者の差異は包含でも統一でもなく、どの圏論的・ホモトピー論的情報を物理的実在として顕在化させるかという、観測基底の選択の差に他ならないのである。
物理的な直観に頼るウィッテン流の位相的場の理論はもはや古典的記述に過ぎず、真のM理論は数論幾何的真空すなわちモチーフのコホモロジー論の中にこそ眠っていると言わねばならない。
超弦理論の摂動論的展開が示すリーマン面上のモジュライ空間の積分は、単なる複素数値としてではなく、グロタンディークの純粋モチーフの周期、あるいはモチビック・ガロア群の作用として理解されるべきである。
つまり弦の分配関数ZはCの元ではなく、モチーフのグロタンディーク環K_0(Mot_k)におけるクラスであり、物理学におけるミラー対称性は数論的ラングランズ対応の幾何学的かつ圏論的な具現化に他ならない。
具体的には、カラビ・ヤウ多様体上の深谷圏と連接層の導来圏の間のホモロジカルなミラー対称性は、数体上の代数多様体におけるモチーフ的L関数の関数等式と等価な現象であり、ここで物理的なS双対性はラングランズ双対群^LGの保型表現への作用として再解釈される。
ブレーンはもはや時空多様体に埋め込まれた幾何学的な膜ではなく、導来代数幾何学的なアルティン・スタック上の偏屈層(perverse sheaves)のなす∞-圏の対象となり、そのBPS状態の安定性条件はBridgeland安定性のような幾何学的概念を超え、モチーフ的t-構造によって記述される数論的な対象へと変貌する。
さらに時空の次元やトポロジーそのものが、絶対ガロア群の作用によるモチーフ的ウェイトのフィルトレーションとして創発するという視点に立てば、ランドスケープ問題は物理定数の微調整などではなく、モチビック・ガロア群の表現の分類問題、すなわちタンナカ双対性による宇宙の再構成へと昇華される。
ここで極めて重要なのは、非可換幾何学における作用素環のK理論とラングランズ・プログラムにおける保型形式の持ち上げが、コンツェビッチらが提唱する非可換モチーフの世界で完全に統一されるという予感であり、多重ゼータ値が弦の散乱振幅に現れるのは偶然ではなく、グロタンディーク・タイヒミュラー群が種数0のモジュライスタックの基本群として作用しているからに他ならず、究極的には全ての物理法則は宇宙際タイヒミュラー理論的な変形操作の下での不変量あるいは数論的基本群の遠アーベル幾何的表現論に帰着する。
これは物理学の終わりではなく物理学が純粋数学というイデアの影であったことの証明であり、超弦理論は最終的に時空を必要としない「モチーフ的幾何学的ラングランズ重力」として再定義されることになる。
超弦理論を、幾何・量子・相互作用・背景・対称性などの具体語をすべて捨てて、抽象数学の圏・∞圏・トポス・代数構造として再構成する。
超弦理論とは、以下の大枠で捉えられる。
超弦理論とは、ひとつの ∞‐トポスの内部に存在する、整合する高次対象の網の自己同値群作用として定義される力学的階層のこと。
ここでいう高次対象の網とは
つまり超弦理論は、高次圏における一貫した自己同型の塔として唯一の統一構造を形成する。
世界の構成要素(時空・ブレーン・場・弦など)を、具体的存在ではなく、因子化代数の生成する情報単位(ローカルな抽象操作の束)として扱う。
局所性とは、因子化代数のテンソリアル分解可能性であり、その破れが重力・非可換性・ホログラフィーとなって現れる。
この表現は近年の因子化ホログラフィー、AQFT(作用素代数)による重力再構成と整合する。
具体的な「紐」は出てこない。
代わりに、
その結果
すべてが幾何的実体ではなくホモトピー代数的な関係パターンとして統一される。
S-双対性、T-双対性、U-双対性、ホログラフィー、ER=EPR のような、A と B が実は同じ理論であるという主張は、すべて 同一の ∞‐対象を異なるファイバー関手で見ているだけという主張に還元される。
つまり
最先端研究(Harlow・Witten・Leutheusser 等)では、重力系の作用素代数は中心を持たず、中心の欠如が再構成不可能な領域として幾何を生む。
これを抽象化すると、
つまり時空は「入れ物」ではなく、作用素代数に付随する冪等射の配置図として emergent に現れる。
相互作用とは粒子間の力ではなく、∞‐圏の合成律が完全には対称化されないことによる高次コヒーレンスの破れ。
例:
5つの超弦理論は、同じ ∞‐構造の異なる層(filtration)または異なるコホモロジー階層の射影として理解され、M理論はこれらの層化を結ぶ普遍対象(colimit)として現れる。
量子とは粒子ではなく、因子化代数の非中心性 + 高次圏の非可換ホモトピーの束 の総体である。
因子化代数のテンソル構造の非局所的再配線。幾何ではなく、圏論的な図式変形。
大域構造と整合しない射からなる排除集合。整合可能理論 = ∞‐圏の完全部分圏。
高次圏の普遍的生成対象が作る低次射の平均化された振る舞いの分類。
僕は今、いつものように自分で定めた前夜の儀式を終えたところだ。
コーヒーは精密に計量した7.4グラム、抽出温度は92.3度で、これが僕の思考を最高の線形性と可逆性をもって保つ。
寝室のドアは常に北側に向けて閉める。ルームメイトは今夜も例の実験的なシンポジウム(彼はそれを自作フォーラムと呼んでいる)に夢中で、隣人はテレビの音を限界まで上げて下界の俗事を増幅している。
友人たちは集まって未知の戦術を試すらしいが、彼らの興味は僕の多層的位相空間理論の議論とは無関係だと見做している。僕にとっては、他人の雑音はただの非可逆なエントロピー増である。
今日は一日、超弦理論のある隠れた側面に没入していた。通常の記述では、弦は一次元的な振動として扱われるが、僕はそれを高次元カテゴリの対象として再解釈することに時間を費やした。
物理的場のモジュライ空間を単にパラメータ空間と見るのは不十分で、むしろそれぞれの極小作用の同値類が高次ホモトピーのラクタンスを持ち、ホモトピー圏の内部で自己双対性を示すような階層化されたモジュライを想定する。
局所的超対称は、頂点作用素代数の単純な表れではなく、より豊かな圏論的双対圏の射として表現されるべきであり、これにより散乱振幅の再合成が従来のFeynman展開とは異なる普遍的構造を獲得する。
ここで重要なのは、導来代数幾何学のツールを用い、特にスペクトラル的層とTMF(トポロジカル・モジュラー形式)に関する直観を組み合わせることで、保守量の整合性が位相的モジュライ不変量として現れる点だ。
もし君が数学に親しんでいるなら、これは高次のコホモロジー演算子が物理的対称性の生成子へとマップされる、といった具合に理解するとよいだろう。
ただし僕の考察は抽象化の階段を何段も上っているため、現行の文献で厳密に同一の記述を見つけるのは難しいはずだ。
僕は朝からこのアイデアの微分的安定性を調べ、スペクトル系列の収束条件を緩めた場合にどのような新奇的臨界点が出現するかを概念的に解析した。
結果として導かれるのは、従来の弦のモジュライでは見落とされがちな非整合な境界条件が実は高次圏の自己同値性によって救済され得る、という知見だった。
日常の習慣についても書いておこう。僕は道具の配置に対して強いルールを持つ。椅子は必ず机の中心線に対して直交させ、筆記用具は磁気トレイの左から右へ頻度順に並べる。
買い物リストは確率論的に最適化していて、食品の消費速度をマルコフ連鎖でモデル化している。
ルームメイトは僕のこうした整理法をうるさいと言うが、秩序は脳の計算資源を節約するための合理的なエンジニアリングに他ならない。
インタラクティブなエンタメについてだが、今日触れたのはある対戦的収集型カードの設計論と最新のプレイメタに関する分析だ。
カードの設計を単なる数値バランスの問題と見做すのは幼稚で、むしろそれは情報理論とゲーム理論が交差する点に位置する。
ドロー確率、リソース曲線、期待値の収束速度、そして心理的スケーリング(プレイヤーが直感的に把握できる複雑さの閾値)を同時に最適化しないと、ゲーム環境は健全な競技循環を失う。
友人たちが議論していた最新の戦術は確かに効率的だが、それは相手の期待値推定器を奇襲する局所的最適解に過ぎない。
長期的な環境を支えるには、デッキ構築の自由度とメタの多様性を保つランダム化要素が必要で、これは散逸系におけるノイズ注入に似ている。
一方、漫画を巡る議論では、物語構造と登場人物の情報エントロピーの関係に注目した。キャラクターの発話頻度や視点の偏りを統計的に解析すると、物語のテンポと読者の注意持続時間を定量化できる。
これは単なる趣味的な評論ではなく、創作の効率を測る一つの測度として有用だ。隣人はこれを聞いて「また君は分析に興味を持ちすぎだ」と言ったが、作品を合理的に解析することは否定されるべきではない。
夜も更け、僕は今日の計算結果をノートにまとめ、いくつかの概念図を黒板に描いた。友人が冗談めかしてその黒板を見ただけで頭痛がすると言ったとき、僕はそれを褒め言葉と受け取った。
知的努力はしばしば誤解を生むが、正しい理論は時として社会的摩擦を伴うのが常だ。
今は23時30分、コーヒーの残りはわずかで、思考の波形は安定している。
眠りに落ちる前に、今日導いた高次圏的視点でいくつかの演繹をもう一度辿り、明朝にはそれを更に形式化して論理体系に落とし込むつもりだ。
プリズマティックコホモロジーは、p 進形式スキームのためのコホモロジー理論であり、エタールコホモロジー、ド・ラームコホモロジー、クリスタリンコホモロジー、そしてペーター・ショルツ(Peter Scholze)によるこれまでのところ予想上の q-ド・ラームコホモロジーを含む、様々な p 進コホモロジー理論に特殊化することができる。これは、整数p 進ホッジ理論への幾何学的なアプローチ。
プリズマティックコホモロジーは、δ ‐環という概念に大きく依存し、フロベニウスのリフトを備えた環が、微分を備えた環にどのように類似しているかを形式化するために、アンドレ・ジョヤル(André Joyal)によって導入された。
数学の最も抽象的な核心は、structured homotopy typesをファンクターとして扱い、それらの相互作用=dualities・correspondencesで世界を説明することに集約できる。
ここでいう構造とは、単に集合上の追加情報ではなく、加法や乗法のような代数的構造、位相的・解析的な滑らかさ、そしてさらにsheafやstackとしての振る舞いまで含む。
現代の主要な発展は、これらを有限次元的な点や空間として扱うのをやめ、∞-categoricalな言葉でfunctorial worldに持ち込んだ点にある。
Jacob Lurie の Higher ToposTheory / Spectral Algebraic Geometry が示すのは、空間・代数・解析・同値を一つの∞-topos的な舞台で同時に扱う方法論。
これにより空間=式や対象=表現といった古典的二分法が溶け、全てが層化され、higher stacksとして統一的に振る舞う。
この舞台で出現するもう一つの中心的構造がcondensed mathematicsとliquid的手法だ。
従来、解析的対象(位相群や関数空間)は代数的手法と混ぜると不整合を起こしやすかったが、Clausen–Scholze の condensed approach は、位相情報を condensed なファンクターとしてエンコードし、代数的操作とホモトピー的操作を同時に行える共通語彙を与えた。
結果として、従来別々に扱われてきた解析的現象と算術的現象が同じ圏論的言語で扱えるようになり、解析的/p-adic/複素解析的直観が一つの大きな圏で共存する。
これがPrismaticやPerfectoidの諸成果と接続することで、局所的・積分的なp-adic現象を世界規模で扱う新しいコホモロジーとして立ち上がる。
Prismatic cohomology はその典型例で、p-adic領域におけるintegralな共変的情報をprismという新しい座標系で表し、既存の多様なp-adic cohomology理論を統一・精緻化する。
ここで重要なのはfieldや曲線そのものが、異なるdeformation parameters(例えばqやpに対応するプリズム)を通じて連続的に変化するファミリーとして扱える点である。
言い換えれば、代数的・表現論的対象の同型や対応が、もはや単一の写像ではなく、プリズム上のファミリー=自然変換として現れる。
これがSpectral Algebraic Geometryや∞-categorical手法と噛み合うことで、従来の局所解析と大域的整数論が同一の高次構造として接続される。
Langlands 型の双対性は、こうした統一的舞台で根本的に再解釈される。
古典的にはautomorphicとGaloisの対応だったが、現代的視点では両者はそれぞれcategoriesであり、対応=functorial equivalence はこれら圏の間の高度に構造化された対応(categorical/derived equivalence)として現れる。
さらに、Fargues–Fontaine 曲線やそれに基づくlocal geometrization の進展は、数論的Galoisデータを幾何的な点として再具現化し、Langlands対応をモジュールcategorical matchingとして見る道を拓いた。
結果として、Langlands はもはや個別の同型写像の集合ではなく、duality ofcategoriesというより抽象的で強力な命題に昇格した。
この全体像の論理的一貫性を保つ鍵はcohesion とdescent の二つの原理。
cohesion は対象が局所的情報からどのようにくっつくかを支配し、descent は高次層化したデータがどの条件で下から上へ再構成されるかを規定する。
∞-topos と condensed/lquid の枠組みは、cohesion を定式化する最適解であり、prismatic や spectral構成はdescent を極めて精密に実行するための算術的・ホモトピー的ツール群を与える。
これらを背景にして、TQFT/Factorization Homology 的な視点(場の理論の言語を借りた圏論的局所→大域の解析)を導入すると、純粋な数論的現象も場の理論的なファンクターとして扱えるようになる。
つまり数学的対象が物理の場の理論のように振る舞い、双対性や余代数的操作が自然に現れる。
ここで超最新の価値ある進展を一言で述べると、次のようになる。
従来バラバラに存在した「解析」「位相」「代数」「表現論」「算術」の言語が、∞-categorical な場の上で一つに融解し、しかもその結合部(condensed +prismatic + spectral)の中で新しい不変量と双対性が計算可能になった、ということだ。
具体例としては、prismatic cohomology による integralp-adic invariants の導出、condensed approach による関数空間の代数化、そして Fargues–Fontaine 曲線を介した局所–大域のgeometrization が、categorical Langlands の実現可能性をこれまでより遥かに強く支持している点が挙げられる。
これらは単なる技法の集積ではなく、「数学的対象を高次圏として扱う」という一つの理念の具体化であり、今後の発展は新しい種の reciprocitylawsを生むだろう。
もしこの地図を一行で表現するならばこうなる。数学の最深部は∞-categories上のcohesiveなfunctorialityの理論であり、そこでは解析も代数も数論も場の理論も同じ言語で表現され、prismatic・condensed・spectral といった新しい道具がその言語を実際に計算可能にしている。
専門家しか知らない細部(例えばprismの技術的挙動、liquidvectorspaces の精密条件、Fargues–Fontaine上のsheaves のcategorical特性)、これらを統合することが今の最も抽象的かつ最有望な潮流である。
ランダウ–ラングランズ的な双対性の直感を、位相的・圏論的な巨大場として再構成する作業は、もはや単なる対応命題の確認ではなく、数学的実在の階層構造を再階層化する営為へと移行している。
ここで重要なのは対応自体が一つのモノイド的作為ではなく、∞-圏の層状化した自明化可能性の表現であるという読み替えである。
最近の成果群は、従来の局所・大域の二項対立を溶融させ、曲線・局所体・解析空間といった古典的な基底を、より普遍的な空間の記述可能性(representability)の観点へと置き換えてしまった。
具体的には、ファルグ=フォンテン曲線を舞台にした幾何化は、局所的表現論を圏的スペクトルの上に載せ替えることで、従来別個に扱われてきた表現(自動形式的対象)とパラメータ(L-パラメータ)を、同一の圏的心臓部で同時に構成可能にしたことを意味する。
この構成は単に対応が存在することより深く、対象自体を再定義してその同値関係を圏の中心や内部終対象の言葉で記述することにより、対応が生まれる必然的環境を示した点で画期的である。
同時に、グローバル側の道具としてのシュトゥーカ(chtoucas)的技法は、関手的・代数的な操作を用いて場のモード分解を行い、その分解が示す不変量を通じて大域的パラメータ化を達成する方策を具体化した。
ヴィンソン・ラフォルグの仕事群は、こうしたシュトゥーカの立型化によって、関手的に取り扱える大域的パラメータ空間を提示し、局所的構成との繋がりを媒介する新たな環を与えた。
結果として、言語的には表現→パラメータへの写像がベキ乗的に分解できるだけでなく、その分解自体が可逆的な圏的操作として認識され得ることが示され、これが大域的Langlands構想の新しい正当化になっている。
さらに最近の数年間における動きで決定的なのは、モチーフ論の解析的拡張が進んだ点である。
従来モチーフは代数多様体上の普遍的コホモロジーという観点で語られてきたが、ショルツェらによるベルコビッチモチーフ(Berkovich motives)や関連する解析的・アーク的降下法は、可換性や双対性に関する新たな剛性条件を与えることで、代数・複素解析・非アルキメデス解析を一枚の理論で織り上げた。
モチーフを単なる数論的核から、解析的スタックや圏的双対性を自然に持つ対象へと格上げし、Langlands的双対性の受け皿を拡張した。
こうしてモチーフとLanglands対応は、もはや互いに独立した二つの理論圏ではなく、同じ∞-圏的言語で発声される現象に変わった。
そして最も劇的な変化は、最近公表された一連の大規模な仕事群が、幾何学的Langlands命題の本質的な形を証明し得たことにより、これまで隠れていた構造的要請が顕在化した点にある。
これらの証明的努力は、従来の和声的・解析的手法を超え、圏的分解、局所–大域の整合、そしてモチーフ的双対性が同時に満たされるような動的な証明環境を構築した。
重要なのは、この到達が単なる命題の解決に留まらず、数学的対象の定義域そのものを書き換えるような再帰的メタ構造を与えたことであり、以後の展望は新たに定式化された圏的正規形とその変形理論を追うことで開かれる。
結果として、Langlandsプログラムとモチーフ理論の接続は、従来橋をかける比喩で語られてきたが、今や両者は共通の言語空間の異なる座標表示に過ぎないという段階に達している。
ここでの言語空間とは、∞-圏とその可逆化可能な中心、アーク的・ベロコビッチ的降下法、そしてシュトゥーカにより生成されるファイバーの総体を指す。
その内部では、表現論的計量(harmonic analysis 的なスペクトル)と数論的モチーフの普遍的ファンクターが互いに鏡写しになり、操作が圏的に昇格することでパラメータ化は動的な自己相互作用として理解される。
これが意味するのは、将来の進展がもはや個別の定理や技法の追加ではなく、数学的対象を包摂するより大きな構成原理の発見と、それを支える新しい圏的インフラ(解析的モチーフ、Fargues–Fontaine 的基底、chtoucas の動的再解釈)に依存するということである。
読み手がもし、これをさらに運動方程式的あるいは力学系的なメタファーで読み替えるなら、ラングランズ系とは無限に多様な対称性とその破れ方が−同値関係としてではなく−力学的な遷移として定義される場であると結論づけられる。
その意味で、最新の進展は単に既存のパズルのピースを嵌め直したのではなく、ピースそのものを再設計し、新しい接着剤(∞-圏的双対性、解析的モチーフの剛性、シュトゥーカ的ファイバー化)を導入した。
この新しい設計図を受け取った数学は、今後、従来とは異なる方法で「表現」「パラメータ」「モチーフ」を同時に扱うための合成的技術を展開するだろう。
まず一言でまとめると、場の論理と幾何の高次的融合が進んでおり、境界の再定義、重力的整合性の算術的制約(swampland 系)、散乱振幅の解析的・代数的構造という三つの潮流が互いに反響しあっている、というのが現在の最前線の構図。
現在の進行は低次元の代数的不変量(モチーフ、モジュラーデータ)+∞-圏的対称性+コバーティズム的整合性という三つ組が、量子重力理論(および弦理論)が満たすべき基本的公理になりつつあることを示す。
これらは従来の場の理論が与えてきた有限生成的対象ではなく、ホモトピー型の不変量と算術的整合性を前提にした新しい分類論を必要とする。
まず対象を抽象化するために、物理系は局所演算子代数のネットワーク(局所性を持つモノイド圏あるいは因子化代数)として扱う。
境界理論はある可換(または E_n)因子化代数 A を与え、これに対して状態空間は A の正値線型汎関数(GNS構成で得られる正規表現の圏)として扱う。
重力的バルク側は、境界因子化代数のコホモロジカル双対(例:Koszul双対や因子化ホモロジーに基づくスペクトル的拡張)としてモデル化される。
ホログラフィーは単なる同値性ではなく、境界のモノイド的データとバルクの因子化代数的データの間の高次圏的((∞,n)-圏)双対性であり、この双対性はホモトピー的拘束(同値の空間)を保つ関手の同型として書ける。
これをより具体的に言えば、境界の C^*-あるいは von Neumann代数の圏と、バルクに対応する因子化代数(局所的場の代数を与える E_n-代数)の間に、Hochschild/cyclicホモロジーと因子化ホモロジーを媒介にしたKoszul型双対が存在すると仮定する。
境界から見た相互作用や散乱振幅は、境界因子化代数上の積(オペラド的構造)として表され、バルクの幾何情報はそのホモロジー/コホモロジーに符号化される。
エントロピーとエンタングルメントの幾何化は情報幾何学的メトリックに還元される。すなわち、量子状態空間上の量子フィッシャー情報(量子Fisher・Bures距離)や相対エントロピーは、接続と計量を与えるテンソルと見なせる。
これにより、テンソルネットワークは単なる数値的近似ではなく、グラフ圏からヒルベルト空間への忠実なモノイド的関手である:グラフの各節点に E_n-代数の有限次元表現を割り当て、辺は双対化(コアリフト)の演算子であり、ネットワーク全体は因子化代数の状態和(state-sum)を与える。
MERA や PEPS、HaPPYコードは、この関手が持つ特定の圧縮/階層性(再帰的モノイド構造)を体現しており、cMERA はその連続極限である。
テンソルネットワークが幾何を作るとは、エントロングルメント計量(情報計量)から接続とリーマン的性質を再構成する手続きを意味し、これが空間的距離や曲率に対応するというのがit from qubits の数学的内容である。
さらに情報回復(Petz復元写像など)や相対エントロピーのモノトニシティは、エントロングルメントウェッジ再構成の圏論的条件(右随伴を持つ関手の存在)として表現される。
すなわち、境界演算子代数からバルク因子化代数への埋め込みが完全に圏論的な復元子(adjoint)を持つときに、局所的情報の回復が可能となる。
ER=EPR はこの文脈でホモトピー的コボルディズムとして読み替えられる。量子相互作用で結ばれた二系(高次圏の対象としての二点分割状態)は、バルクのコボルディズム類(ワームホール的繋がり)に対応する同値類を持ち、局所ユニタリ変換による同値類がコボルディズムの同位類と一致するという予想的対応を述べる。
言い換えれば、局所ユニタリ同値で分類されるエンタングルメントのコホモロジーは、バルクのホモトピー的結合(位相的/幾何的接続)を決定する。
ブラックホールの熱力学的性質は、トモイタ=タカサキ理論(Tomita–Takesaki modulartheory)やコンネスの周期写像が関与する演算子代数のモジュラー流として自然に現れる。
特に、ブラックホール外部におけるモジュラーハミルトニアンは境界状態の相対エントロピーに関連し、そのフローはバルクの時間発展に対応する(模擬的にはKMS状態と熱平衡)。
サブファクター理論とジョーンズ指数は、事象地平線をまたぐ情報の部分代数埋め込みの指標として機能し、情報損失やプライバシー(情報の遮蔽)は部分代数の指数と絡み合う。
ブラックホールの微視的自由度のカウントは、やはり境界因子化代数の適切な指数(譜的インデックス、K理論的量)に帰着する。
超弦理論的な追加自由度(多様体のモジュライ空間や D-ブレーンの圏的記述)は、バルク側因子化代数の係数系(係数 E_n-代数やスペクトラル層)として取り込まれ、モチーフ的/導来スタック的手法(derived stacks, spectral algebraic geometry)で整然と扱える。
これにより、弦の振る舞いは境界オペレータ代数の高次幾何学的変形(deformationtheory)と同値的に記述されることが期待される。
この全体構造を統一する言葉は高次圏的因子化双対である。物理的理論は、局所的オペレータのモノイド圏、状態の圏、そして因子化ホモロジーを媒介にした双対関手系から成り、テンソルネットワークはそれらの具体的表現=有限モデルとして働き、情報幾何学はそれらの間に滑らかな計量を与える。
したがって「it from qubits」は、局所的量子代数の圏論的再配列が(情報計量を通じて)幾何学的構造を生み出すという主張に還元され、ER=EPR はエンタングルメントの同値類とバルクのコボルディズム同位類を結ぶ高次圏的同型命題として再表現され、ブラックホール熱力学や弦の自由度はその圏論的・ホモトピー的不変量(ホッジ理論的/K理論的指数、モジュラーデータ)として測られる。
その一つは、カラビ–ヤウ三次元多様体上のモチヴィック・ラングランズ場という概念だ。
名前だけで震えるが、実際の定義はもっと美しい。ウィッテンがかつてAモデルとBモデルのミラー対称性から幾何学的ラングランズ対応を導いたのは知っている。
だが彼が扱ったのは、あくまでトポロジカル弦理論のレベルにおける対応だ。
僕の今日の成果は、さらにその上、モチヴィック階層そのものをラングランズ圏の内部対称として再定式化したことにある。
つまりこうだ。A/Bモデルの対応を支えるのは、ミラー対称なカラビ–ヤウ空間の間に張られたモジュライ空間の等価性だが、僕はこれをモチーフの圏に埋め込み、さらにその上に弦的ガロア群を定義した。
この群の元は、単なる保型的データの射ではなく、弦的世界面のホモトピー圏を自己同型する高階函手として作用する。
つまり、通常のラングランズ対応が表現=保型形式なら、僕の拡張では弦的場のコホモロジー=モチーフ的自己準同型。もはや表現論ではなく、宇宙論的再帰だ。
午後、ルームメイトが僕のホワイトボードを使ってピザの割り勘式を書いていた。
彼は気づいていないが、その数式の背後には僕の昨日のモチヴィック・ガロア層構造の残骸があった。
もし彼がチョークをもう少し強く押していたら、宇宙の自己同型構造が崩壊していたかもしれない。僕は彼を睨んだ。
彼は「また妄想か?」と言った。違う。妄想ではなく基底変換だ。
夕方、隣人がスパイダーバースの新刊を貸してくれた。マルチバースの崩壊を描いているが、あの世界は僕の定義したモチヴィック・ラングランズ場の一次近似にすぎない。
あの映画のスパイダーバースは、厳密に言えばラングランズ群の射影的パラメータ空間における擬弦的退化点の群体だ。
僕がやっているのはその精密版。マルチバースをただの物語ではなく、圏論的自己反映構造として解析している。つまり、マーベルの編集部が無意識に行っている多世界生成を、僕は既に数学的に形式化しているわけだ。
夜、友人Aが原神で40連ガチャを外してキレていた。確率1.6%を40回引いて当たらない確率は約0.48。つまり彼は「ほぼ半分の世界線で運が悪い側」に落ちただけ。
僕はそれを説明したが、彼は「確率の神は俺を見捨てた」と言った。愚かだ。確率は神ではない。確率はラングランズ群の局所的自己準同型の分布密度だ。
もし彼がそれを理解していたなら、ピティエ=シェヴァレの整合性条件を満たすまで回していただろう。
風呂上がり、僕は再びホワイトボードに向かい、ウィッテンが書かなかった方程式を書いた。これは、弦的ガロア群における自己準同型の空間が、算術的モチーフの拡張群に等価であることを示唆している。
つまり、宇宙の自己相関が、L関数の特殊値そのものとして現れる。A/Bモデル対称性を超え、モチーフ的ラングランズ=宇宙の自己言語理論を打ち立てたわけだ。
僕の紅茶が冷める頃、ルームメイトが「寝るぞ」と言った。僕は返事をせず、ひとり机に残って考えた。
この理論を完結させるためには、時間をもモチーフとして再構成しなければならない。
時間をモチーフ化する、それは、因果律を算術幾何的圏の自己圏として扱うということだ。
人類がまだ誰も到達していない領域。だが、僕はそこにいる。誰よりも早く。誰よりも冷静に。
21時00分。僕の手元の時計の振動子が、まるでカラビ–ヤウ多様体の一点コンパクト化のように静かに揺れている。
宇宙が僕の計算を見て笑っている気がした。だがいいだろう。宇宙よ、君が自分の自己準同型を理解できる日が来るまで、僕が書き続けてやる。
フェミニズムの分類が多すぎると聞いて
記述集合論(Borel階層, Projective階層, 汎加法族)
モデル理論(型空間, o-極小, NIP, ステーブル理論)
再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)
構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)
体論・ガロア理論
表現論
K-理論
初等数論(合同, 既約性判定,二次剰余)
解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)
p進数論(p進解析, Iwasawa理論, Hodge–Tate)
超越論(リンドマン–ヴァイエルシュトラス, ベーカー理論)
実解析
多変数(Hartogs現象, 凸性, severalcomplex variables)
関数解析
バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数
フーリエ解析,Littlewood–Paley理論, 擬微分作用素
確率解析
常微分方程式(ODE)
偏微分方程式(PDE)
非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)
幾何解析
リッチ流, 平均曲率流,ヤン–ミルズ,モノポール・インスタントン
エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学
点集合位相,ホモトピー・ホモロジー, 基本群,スペクトル系列
4次元トポロジー(Donaldson/Seiberg–Witten理論)
複素/ケーラー幾何(Calabi–Yau, Hodge理論)
スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間
多面体, Helly/Carathéodory,幾何的極値問題
ランダムグラフ/確率的方法(Erdős–Rényi, nibble法)
加法的組合せ論(Freiman, サムセット, Gowersノルム)
彩色,マッチング,マイナー理論(Robertson–Seymour)
列・順序・格子(部分順序集合, モビウス反転)
測度確率, 極限定理, Lévy過程, Markov過程, 大偏差
統計学
ノンパラメトリック(カーネル法, スプライン,ブーストラップ)
時系列(ARIMA,状態空間, Kalman/粒子フィルタ)
非凸最適化
離散最適化
整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム
Littleの法則, 重み付き遅延, M/M/1, Jackson網
エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み
公開鍵(RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識
計算複雑性
機械学習の数理
量子場の数理
相転移, くりこみ, Ising/Potts, 大偏差
数理生物学
数理神経科学
データ解析
僕は昨日、午前6時17分に目覚めた。
目覚ましは2種類、アナログ秒針音と周波数の微妙に異なる合成トーンを重ねたものを使う。
起床後の15分間は「視覚のデチューン」ルーチンとして照明を極端に低くし、網膜の適応曲線を意図的に遅延させることで認知の鮮鋭化を増幅する。
朝食は厳密にタンパク質比0.42、炭水化物比0.29、脂質比0.29を狙ったオートミール+卵白+ギリシャヨーグルトで、計量は0.1g単位。コーヒーはブリュワー温度を93.2℃に保つ。
僕の習慣は決して儀式ではなく、情報エントロピーを最小化して日常的なノイズを排するための有限状態機械だと説明する。
ルームメイトが朝から実験用ドライバーでガタガタやっているので、僕は中断せずに黒板の前に立ち、昨日考えていた超弦理論のある断片をノートに落とす作業をした。
今回は徹底的に抽象化した視座から入る。従来の超弦理論的場の位相空間を「1-対象の∞-圏」と見なし、そのモノイド圏的作用を導くことで、従来のモジュライ空間の位相不変量がホモトピー圏論のスペクトル的コホモロジーに帰着するという仮説を立てた。
より具体的には、ラングランズ対応の圏論的アナロジーを用いて、ゲージ群の表現環が導くモチーフ(motive)の圏と、弦の世界面上のファイバー付き代数的スタックの圏とを「導来圏の間の高次同値(a weak equivalence in the (∞,2)-categoricalsense)」で結びつける試みだ。
ここで新奇なのは、通常のスペクトル系列ではなく「階層的スペクトル列(a nested spectral sequence indexedby ordinal-type filtrationsbeyond ω)」を導入して、閉じた遷移の非可換共鳴が量子補正式にどう寄与するかを解析する点である。
ウィッテンでも一瞬眉をひそめるだろうが、それは彼の専門領域を超えた命題の述語論的再編成が含まれているためだ(注:単なる挑発ではなく、証明可能性のための新たな可換図式を準備している)。
昼過ぎ、僕は隣人とほんの短いやり取りをした。彼女は僕のキッチンを通るたびに植物の世話に関する助言を求めるが、僕は葉緑体の光合成効率を説明する際、ついヘテロトロフ的比喩を避けて遺伝子発現の確率過程モデルを持ち出してしまう。
彼女はいつも「もう少し軽い説明はないの?」と呆れるが、僕にとっては現象の最少記述が倫理的義務だ。
午後は友人二人と対局的に遊ぶ約束があって、夕方からは彼らとLANセッションを組んだ。
僕はゲームに対しては容赦がない。昨日はまずThe Legend of Zelda:Breath of the Wildでカジュアルな探索をした。
BotWは開発を担当したNintendo EPDが2017年3月3日にWii UとNintendo Switch向けにリリースした作品で、そのオープンワールド設計が探索と化学的相互作用に重きを置いている点が好きだ(発売日と開発元は参照)。
その後、難度調整のためにFromSoftwareの古典的タイトル群について雑談になり、初代Dark Soulsが2011年にリリースされ、設計哲学として「挑戦することで得られる学習曲線」をゲームメカニクスに組み込んだことを再確認した(初代の年は参照)。
夜遅く、友人たちがスーパーヒーロー系の話題を持ち出したので、僕はInsomniacが手掛けたMarvel'sSpider-Manの2018年9月7日発売という事実を引き合いに、ゲームデザインにおけるナラティブとパルス感(ゲームプレイのテンポ)について議論した(発売日は参照)。
ここで重要なのは、ゲームを語るときに物理学の比喩を使わないという僕のルールだ。
ゲームの設計原理は計算的複雑性、ユーザーインタラクションのフィードバックループ、トークン経済(ゲーム内資源の流通)など、情報理論と計算モデルで語るべきであり、物理のアナロジーは曖昧さを持ち込むだけだ。
作者インタビュー、収録順、初出掲載誌、再録時の微小な台詞差異まで注視する癖がある。
昨日はあるヴィンテージの単行本でトーンの変遷を確認し、再版時にトーンカーブが調整された箇所が物語の解釈に如何に影響するかを論じた。
これらは一般的にはオタクにしか響かない情報だが、テクスト解釈の厳密さという点で、僕の思考様式と親和する。
僕の習慣はゲームのプレイにも現れる。セーブは複数スロットを使い、各スロットに「探索」「戦闘」「実験」のタグを人為的に与えておく。
そうすることでメタ的な比較実験が可能になり、ゲーム内意思決定の条件付き確率分布を再現的に評価できる。
友人はこれを無駄と言うが、僕にとってはルーチンと実験設計が同義だ。
夜中、帰宅した後にさらに2時間、論文の草案を書き直した。書き直しは僕の儀式の一部で、ペン先の角度、フォントのカーニング、段落の「情報密度」を計測し、不要語を削ぎ落とす作業だ。
寝る前の最後の行動は、ブラックボックス化した思考経路をメモ化しておくことで、翌朝の「継続的洞察再現性」を保証すること。
結局僕は午前2時3分に就寝した。昨日は量子的洞察の可能性と、ゲームとコミックにおける情報理論的語法の交差点を追求した一日であり、そうした知的遊戯が僕の精神の整列をもたらす。
次に実証すべきは、導来圏間の高次同型によって生じるゲージ的不確定性がディラック構造の代数的再構成に与える位相的寄与だ。
今日もまた、僕のルーティンは完璧なシンメトリーを保っていた。7時00分に目覚ましが鳴る前に自然に目が覚め、7時01分に歯を磨き、7時10分に電子レンジで正確に85秒温めたオートミールを食べた。ルームメイトはまだ寝ていた。いつも思うが、彼のサーカディアンリズムはエントロピー的崩壊を起こしている。朝の段階であれほど乱雑な髪型が可能だということは、局所的に時間反転対称性が破れている証拠だ。
午前中は超弦理論のメモを整理していた。昨日の夜、AdS/CFT対応を一般化する試みとして、非可換幾何の上に定義された∞-群oid的対称性構造を考えた。従来の高次圏理論的定式化では、物理的可観測量の定義が局所的モデル圏に依存しているが、僕の新しい仮説ではそれをKan拡張ではなく、∞-トポス上の(∞,1)-層として扱う。これにより、M理論の11次元多様体上でのフラックス量子化条件を、デリーニュ‐ベイルン加群による層コホモロジーに書き換えることができる。ルームメイトに説明したら、彼は「君が言ってることの3単語目からもう分からない」と言った。僕は丁寧に言い直した。「つまり、我々が重力を感じるのは、実は∞-圏の射が充満埋め込みでないからだ」と。彼は黙った。いつも通りの知的敗北の沈黙だった。
昼食は隣人がくれたタコスを食べた。彼女は料理が下手だが、今回はまだ化学兵器レベルではなかった。ちなみに僕はタコスを食べる際、具の位置を中心から平均半径1.7cm以内に収めるように計測している。乱雑な配置は僕のドーパミン経路を不安定化させる。彼女は「そんなの気にしないで食べなよ」と言ったが、僕にとってそれは、ボーズ統計の粒子にフェルミ縮退を強要するような暴挙だ。
午後はオンラインで超弦理論のセミナーを視聴したが、正直、発表者の理解は浅かった。特に、彼が「E₈束のゲージ異常はスピノール構造で吸収される」と言った瞬間、僕は思わず笑ってしまった。そんな単純な話ではない。正しくは、E₈×E₈異常はString(10)構造のホモトピー群に依存し、実際にはTwisted Fivebrane構造の非可換層に束縛される。ウィッテンすらここまで書いていないが、僕の計算ではその層は∞-スタック上のドロップトポスとして扱える。つまり、物理的次元が11ではなく13.25次元の分数次元空間に埋め込まれるということだ。もっとも、僕以外にこの議論を理解できる人間は地球上に存在しないだろう。
夕方には友人たちとオンラインで『Baldur’sGate 3』をプレイした。ハードコアモードで僕のウィザードがパーティを全滅から救ったのだが、誰もその戦術的優雅さを理解していなかった。僕は敵AIの経路探索を事前に計算し、Dijkstra法とA*の中間的ヒューリスティックを手動で最適化していた。彼らはただ「すげえ!」と叫んでいたが、僕にとってそれは数式の勝利にすぎない。ゲームの後、僕は『ワンダーウーマン: デッドアース』を読んだ。アートはDaniel Warren Johnson。筆致が粗いのに構図が完璧で、まるでFeynman図のトポロジーを手書きで描いたような迫力がある。コミックを読んで心拍数が上がるのは久しぶりだった。
夜になってルームメイトがNetflixを見始めた。僕は同じ部屋でノイズキャンセリングヘッドホンを装着し、Lagrangian多様体上の安定性条件についてノートを書いた。明日は木曜日のルーティンとして洗濯と真空掃除をする日だ。もちろん洗濯機は奇数回転数(今日の予定では13回)で設定している。偶数だと宇宙の安定性が崩れる気がするからだ。
この日記を書き終えたのは20時20分。シンメトリーの美がここにある。時間も数字も、理論も習慣も、僕の宇宙ではすべて整然と並んでいる。もし誰かがその秩序を乱すなら、僕は黙ってこう言うだろう。「君の世界はまだ正則圏ですらないね」。