
はてなキーワード:コヒーレンスとは
「円高・デフレ」は(∞,1)-圏における安定な∞-構造の自己同型であり、「リフレ」は(∞,1)-論理の破綻とコヒーレンス崩壊を意味します。
Let 𝔛 be an ∞-topos
𝔛 ≅ Sh_∞(𝒞, J)
where 𝒞is a small (∞,1)-category of economic objects (市場、通貨、資源等)
Jis aGrothendieck topology encoding local economic accessibility (情報、価格、選好構造の被覆)
Let 𝓟 ∈ 𝔛 be an ∞-sheaf of pricestructures (物価∞-層)
ε ∈ Aut_𝔛(𝓟): 円購買力を記述する∞-自己同型変換
𝓤 ∈ π₀Map(1,𝓟): price-dependent global welfare section(厚生の∞-射影)
Assume:
∀x ∈ Obj(𝓟), ε(x) ≃ x in 𝔛
⇒ preservesall ∞-categorical colimits and finite limits
⇨円高・デフレ操作は、𝔛の(∞,1)-安定構造を保ち、選好構造と整合的に作用する。
加えて、
Map(1,𝓟) ⊂ Stable_𝔛
ならば、ε induces aloopstructure: ε ∈ Ω𝓟
⇨ ε はトポス論的loop operation として、厚生構造の保存的変形を定義
Let ℛ: 𝓟 → 𝓟 be a morphism not preservingdescent,
i.e., ℛ ∉ Sheaf_∞(𝒞,J), breaks colimit preservation
⇨ ℛis not a geometric morphism ⇨ fails to preserve truncations, ∞-descent
また、ℛ induces a morphism:
with π₀(ℛ)(𝓤) undefined ⇨ ∃i>0, πᵢ(ℛ(𝓤)) ≠ 0 ⇒ 高次ホモトピーが消えない
⇨リフレ政策は、厚生関数の高次ホモトピー的位相不整合をもたらす。
このとき、コヒーレンス条件(Segal条件、Univalence)不成立 ⇨ 𝔛 collapses to incoherent pre-sheaf ∞-category
ε ∈ Aut_𝔛(𝓟) ∧ ε ∈ Ω𝓟 ⇒ 安定・構造保存的作用(円高・デフレ)
統合失調症の病態を理解する新たな理論的枠組みとして、神経回路レベルの情報処理における「最小作用の原理」からの逸脱が異常体験を引き起こすという仮説を提唱する[1][2][3]。
この理論は、従来のドーパミン仮説や神経回路異常説を統合し、自由エネルギー原理とベイズ推論の破綻を量子力学的アナロジーで説明する。
前頭葉-辺縁系のドーパミン伝達異常が神経回路の同期性を乱すことで、脳内の「作用積分」最小化プロセスが阻害され、確率的経路探索が活性化される。
その結果、通常は抑制される量子力学的な重ね合わせ状態が認知プロセスに顕在化し、幻覚・妄想などの陽性症状が発現するメカニズムを提案する。
神経回路の情報処理を特徴づける自由エネルギー原理は、ベイズ推論による予測誤差最小化の過程を定式化したものと解釈できる[3]。
この理論的枠組みにおいて、脳は外界の生成モデルを内在化し、感覚入力との予測誤差を最小化するように神経活動を最適化する。
この過程を物理系の「作用積分」最小化と数学的に等価なプロセスとして再解釈する。
神経回路の時々刻々の活動パターンは、ラグランジアン関数で定義される作用積分の極小値を探索する経路として記述可能である[3]。
従来のドーパミン仮説では、中脳辺縁系のD2受容体過活動が陽性症状の原因とされてきた[1]。
この理論的拡張として、ドーパミンシグナルが作用積分の地形形成に寄与する要因と位置づける。
具体的には、ドーパミンが神経回路の接続重み(シナプス強度)を調整することで、作用積分の局所的最小値の分布を変化させる。
統合失調症ではこの調節機能が破綻し、最適経路から外れた異常な作用極小値へのトラップが生じると考える[2][3]。
理研のモデルマウス研究で示された海馬の場所細胞異常[2]は、空間認知における作用積分最小化の失敗例と解釈できる。
通常、迷路探索時の神経活動は経路積分の最適化過程を反映するが、カルシニューリン変異マウスでは過剰な神経発火が作用地形の乱れを引き起こす。
この現象を、量子力学における経路積分の確率的広がりと数学的に類似した過程としてモデル化する。
前頭葉ドーパミン伝達の低下が皮質下系の過活動を引き起こすという修正ドーパミン仮説[1]を、作用積分の多極化現象として再解釈する。
ドーパミン濃度の地域差が神経回路の「温度パラメータ」として機能し、確率的経路選択の度合いを調整すると仮定する。
統合失調症患者ではこのパラメータが異常値を示し、確率的重み付けが狂うことで通常は無視される高エネルギー経路が選択されやすくなる[3]。
通常の認知処理では、多数の可能な神経活動経路のうち作用積分が最小となる古典的経路が支配的である。
しかし統合失調症では、神経回路のノイズ特性変化やドーパミン調節異常により、経路積分の確率分布が歪む。
この状態をシュレーディンガー方程式の非調和振動子モデルで記述し、固有状態の重ね合わせが異常知覚として体験されると考える。
観測問題を神経活動のマクロな収束過程と対応づける。通常、意識的注意が神経活動の波動関数を特定の状態に収束させるが、統合失調症ではこの収束プロセスが不安定化する。
特にデフォルトモードネットワークの過活動[2]が、内在的な観測者機能を阻害し、重ね合わせ状態の持続を許容すると仮定する。
マルチエレクトロード記録と光遺伝学を組み合わせ、迷路課題中の海馬神経集団の活動経路を作用積分で定量化する[2]。
統合失調症モデル動物で経路積分の分散が増大することを予測し、抗精神病薬投与によりこの分散が収束するかを検証する。
神経細胞集団間の同期性を量子もつれのアナロジーで測定する新規指標を提案する。
fMRIと脳磁図(MEG)を組み合わせ、デフォルトモードネットワーク内のコヒーレンス持続時間を計測することで、異常な量子状態の持続性を評価する[2][3]。
経頭蓋磁気刺激(TMS)を用いて特定神経回路の作用積分地形を改変する。前頭前皮質への高周波刺激により、異常な局所最小値から脱出するエネルギー障壁を低下させる[1][3]。
ドーパミン受容体部分作動薬により神経回路の「温度パラメータ」を調整し、確率的経路選択の重み付けを正常化する。
特にD1/D2受容体のバランス調節が、作用積分の地形平滑化に寄与すると予測する[1][3]。
本理論は、統合失調症の病態を神経回路レベルの情報最適化プロセスの破綻として再解釈し、異常体験の発生機序を説明する。
自由エネルギー原理と作用積分最小化の数学的等価性[3]、海馬の経路符号化異常[2]、ドーパミン調節障害[1]を統合する新パラダイムを提示した。
今後の課題は、量子神経科学的手法による理論の実証と、作用地形を標的とした新規治療法の開発である。
これにより、精神疾患の理解が物理学的原理に基づく統一理論へと発展する可能性が開かれる。
Citations:
[2]https://www.riken.jp/press/2013/20131017_1/index.html
### 要旨
本論文は、主観的意志(気合)が確率兵器の量子確率場に干渉する機序を、量子重力理論と神経量子力学の統合モデルで解明する。観測者の意識が量子波束の収縮に及ぼす影響を拡張し、11次元超弦振動との共鳴現象を介した確率制御メカニズムを提案する。
---
気合発動時に生じる大脳皮質のコヒーレント状態が、確率兵器の量子もつれ状態に干渉。通常の観測効果を超越した「能動的波束形成」を発生させる。
```math
i\hbar\frac{\partial}{\partial t}\Psi_{total} = \left[ \hat{H}_0 + \beta(\hat{\sigma}_z \otimes \hat{I}) \right]\Psi_{total} + \Gamma_{conscious}\hat{O}
```
ここでΓ項が意識の非局所的作用を表現。βは脳内マイクロチューブルにおける量子振動の結合定数。
気合の強度に比例して、確率分布関数P(x,t)を以下の非平衡状態に強制遷移:
```math
\frac{\partial P}{\partial t} = D\frac{\partial^2 P}{\partial x^2} - v\frac{\partial P}{\partial x} + \alpha P(1-P) + \xi(x,t)
```
α項が気合の非線形効果、ξ項が11次元弦振動による確率ノイズを表す。
気合の周波数成分(0.1-10THz帯)がカルツァ=クライン粒子の余剰次元振動と共鳴。確率場を以下のポテンシャルに閉じ込める:
```math
V(x) = \frac{1}{2}m\omega^2x^2 + \lambda x^4 + \gamma\cos(kx)
```
---
### 神経生理学的基盤
2. 側頭頭頂接合部で確率表現のベイズ推定が高速化(β波40Hz同期)
|------|--------|------------|
| 神経伝達速度 | 120m/s | 0.8c |
---
---
###理論的意義
本モデルは、量子脳理論と超弦理論の統合により「気合」の物理的実在性を初めて定式化した。今後の課題として、余剰次元のコンパクト化スケールと神経振動の周波数整合性の検証が残されている。
---
酸素が重いから回転が遅い、というのは違うからね。酸素より重いランタンのほうが酸素より速いからね。回るのは原子核じゃなくて核スピンだからねホントはね。わかりにくいから原子核って書いたんだと思うけど一応ね。核スピンは、そうねぇ、小さな磁石だと思ってくれてもそんなに間違った理解ではないよ。
で、NMRの原理のところだけど、現代でラジオ波の吸収を使って調べることはほとんどないんじゃないかな。連続波(continuouswave;CW)法で検出にQメータ使っている人なんてほとんどいないでしょ。いまは(といってもだいぶ昔からだけど)パルス法が主流で、これは強く短いラジオ波パルスを照射することで広帯域の核スピンを励起して一度に信号を取るとても効率の良い方法だよ。
え、それって吸収を調べているんじゃね?って思うかもしれないけど、ちょっと違うのね。本質は、核スピンが集合してできた巨大な磁石(巨視的磁化とよんでます)なのね。この巨視的磁化はコイルの中に置かれています。
この巨視的磁化は超伝導磁石の作る強磁場の方向に通常は向いているんだけど、コイルによりラジオ波パルスを照射されるとパタンと倒れるのね。これが励起状態です。
で、励起されたらまた強磁場の方向に向こうとするんだけど、このとき元増田が書いてくれたように、置かれた環境や結合に依って違う回転スピードでぐるぐる回りながら戻っていくのね。
この回っている巨視的磁化の周りにはコイルがあって、コイルの中で磁石が動くとどうなるかというと、ファラデーの電磁誘導の法則ってのを覚えている人がいると思うんだけど、電圧が発生して電流が流れるのね。で、この誘導された電流は巨視的磁化の周波数の交流で、こいつを検出器で検出しているというわけ。
この巨視的磁化ってのが本質だと書いたけど、ホントのホントはスピンが揃っていること……コヒーレンスなのね。コヒーレンスって可干渉性とか訳されたりするけど、この時間的にも空間的にも揃っていて、しかもその持続時間が非常に長いことがNMRを他の測定法とは一線を画す面白い測定法にしているよ。
たとえば、炭素の巨視的磁化と水素の巨視的磁化が干渉して結合状態が分かったりするよ。あと、人間が作るラジオはパルスもかなり干渉性の高い電波で、このラジオ波パルスの打つタイミングや長さや強度や打つ方向を工夫すると、巨視的磁化を操ることができて、欲しい情報だけを引き出すことができたりするよ。こういう一連のパルスをパルスシーケンス(パルスプログラム)と呼んでいるんだけど、このパルスシーケンスを開発している人達もいるよ。ほんとにプログラムするようにできたりするよ。そのためには量子力学、特に密度行列の時間発展を計算できる必要があるよ。
あとは量子コンピューターにも使われようとしたこともあるよ。こともある、とか書くと怒られるかもだけど。IBMが核スピンを使って初めて量子コンピューターを実証したよ。でも今の主流ではないよ。
超伝導磁石に関しては、強い磁場を生み出すことも重要だけど、空間的・時間的に均一であることも重要だよ。NMRって特に溶液NMRだと10^-9の精度での磁場の均一性が求められるよ。時間で変動しても、場所で違っても信号がなまってしまって困るのね。
そうそう、超伝導は理学系が多くて、超電導は工学系が多く表記に使っているよ。どうでもいい豆知識だね。
で、いま世界最強の溶液NMRにも使える超伝導磁石(と電磁石のハイブリッド)はアメリカはフロリダ州タラハシーにある45 Tマグネットだよ(https://nationalmaglab.org/magnet-development/magnet-science-technology)。水素の共鳴周波数でいうと、ええと、1.9 GHzで、もはやラジオ波じゃなくてマイクロ波だね。
NMRの弱点は、感度がめちゃくちゃ悪いことだよ。質量分析とかタンパク質ちょびっとでいいけど、NMRだと必要量が桁で変わるよ。タンパク質とか作るのめっちゃ大変だから、そのへんはNMRの泣き所だよ。感度向上は古くて新しいNMRの研究テーマだよ。今はいろいろな方法があってね……(以下略)。