Movatterモバイル変換


[0]ホーム

URL:


はてラボはてな匿名ダイアリー
ようこそ ゲスト さんログインユーザー登録

「カーネル法」を含む日記RSS

はてなキーワード:カーネル法とは

2025-10-21

数学の分類はこんな感じか

フェミニズムの分類が多すぎると聞いて

anond:20251020210124

0. 基礎・横断

集合論

公理集合論(ZFC, ZF, GCH, 大きな基数)

記述集合論(Borel階層, Projective階層, 汎加法族)

強制法フォーシング),相対的一致・独立

理論理学

述語論理(完全性定理,コンパクト性)

モデル理論(型空間, o-極小, NIP, ステーブル理論

証明論(序数解析,カット除去,直観主義論理

再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)

圏論

関手自然変換, 極限/余極限

加群圏,アーベル圏,三角圏,派生

トポス論,モナド,アジュンクション

数学基礎論哲学

構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)

1.代数学

群論

組み合わせ群論(表示, 小石定理,自由群)

代数群/リー群表現, Cartan分解,ルート系)

幾何群論ハイパーリック群, Cayleyグラフ

環論

可換環論(イデアル,局所化,次元理論, 完備化)

可換環アルティン環, ヘルシュタイン環, 環上加群

体論・ガロア理論

体拡大, 分解体,代数独立, 有限体

表現

群・リー代数表現(最高ウェイト,カズダン–ルスティグ)

既約表現,調和解析との関連,指標

ホモロジー代数

射影/入射解像度, Ext・Tor,派生関手

K-理論

アルバースカルーア理論, トポロジカルK, 高次K

線形代数

ジョルダン標準形,特異値分解,クリフォード代数

計算代数

Gröbner基底,多項式時間アルゴリズム,計算群論

2. 数論

初等数論(合同, 既約性判定,二次剰余)

代数的数論(代数体, 整環,イデアル類群,局所体)

解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)

p進数論(p進解析, Iwasawa理論, Hodge–Tate)

算術幾何楕円曲線, モジュラー形式,代数多様体の高さ)

超越論(リンマンヴァイエルシュトラス, ベーカー理論

計算数論(楕円曲線法,AKS素数判定, 格子法)

3. 解析

実解析

測度論・ルベーグ積分, 凸解析,幾何的測度論

複素解析

変数リーマン面, 留数, 近似定理

変数(Hartogs現象, 凸性, severalcomplex variables)

関数解析

バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数

調和解析

フーリエ解析,Littlewood–Paley理論, 擬微分作用素

確率解析

マルチンゲール,伊藤積分, SDE,ギルサノフ, 反射原理

実関数論/特殊関数

ベッセル, 超幾何,直交多項式, Rieszポテンシャル

4.微分方程式力学系

常微分方程式(ODE)

安定性,分岐, 正準系,可積分系

偏微分方程式(PDE)

楕円型(正則性,変分法, 最小曲面)

放物型(熱方程式, 最大原理, Harnack)

双曲型(波動, 伝播, 散乱理論

非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)

幾何解析

リッチ流, 平均曲率流,ヤンミルズ,モノポールインスタント

力学系

エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学

ハミルトン力学,KAM理論,トーラス崩壊

5.幾何学・トポロジー

位相幾何

点集合位相,ホモトピーホモロジー, 基本群,スペクトル系列

幾何トポロジー

3次元多様体幾何化, 結び目理論,写像類群)

4次元トポロジー(Donaldson/Seiberg–Witten理論

微分幾何

リーマン幾何(曲率,比較幾何,有界幾何

シンプレクティック幾何(モーメント写像, Floer理論

複素/ケーラー幾何(Calabi–Yau, Hodge理論

代数幾何

スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間

有理幾何(MMP, Fano/一般型,代数曲線/曲面)

離散幾何・凸幾何

多面体, Helly/Carathéodory,幾何極値問題

6.組合せ論

極値組合せ論(Turán型, 正則性補題

ランダムグラフ/確率方法(Erdős–Rényi, nibble法)

加法組合せ論(Freiman, サムセット, Gowersノルム)

グラフ理論

彩色,マッチング,マイナー理論(Robertson–Seymour)

スペクトルグラフ理論,拡張グラフ

組合設計ブロック設計, フィッシャーの不等式)

列・順序・格子(部分順序集合, モビウス反転)

7.確率統計

確率論(純粋

測度確率, 極限定理, Lévy過程, Markov過程, 大偏差

統計

数理統計推定, 検定, 漸近理論,EM/MD/ベイズ

ベイズ統計MCMC, 変分推論, 事前分布理論

多変量解析(主成分, 因子,判別,正則化

ノンパラメトリックカーネル法, スプライン,ブーストラップ

実験計画/サーベイ,因果推論(IV,PS,DiD,SCM

時系列(ARIMA,状態空間, Kalman/粒子フィルタ

確率最適化/学習理論

PAC/VC理論,一般境界,統計学習

バンディット,オンライン学習,サンプル複雑度

8.最適化オペレーションリサーチ(OR)

凸最適化

二次計画, 円錐計画(SOCP,SDP),双対性,KKT

凸最適化

多峰性, 一階/二階法, 低ランク,幾何的解析

離散最適化

整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム

確率的/ロバスト最適化

チャンス制約,分布ロバスト,サンプル平均近似

スケジューリング/在庫/待ち行列

Little法則, 重み付き遅延, M/M/1, Jackson網

ゲーム理論

ナッシュ均衡,進化ゲーム,メカニズムデザイン

9. 数値解析・計算数学科学計算

数値線形代数(反復法,直交化, プリコンディショニング)

常微分方程式の数値解法(Runge–Kutta,構造保存)

PDE数値(有限要素/差分/体積,マルチグリッド

誤差解析・条件数,区間演算,随伴

高性能計算HPC)(並列アルゴリズム,スパー行列

シンボリック計算(CAS,代数的簡約, 決定手続き

10.情報計算暗号(数理情報

情報理論

エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み

暗号理論

公開鍵RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識

計算複雑性

P vsNP,ランダム化・通信・回路複雑性,PCP

アルゴリズム理論

近似・オンライン確率的,幾何アルゴリズム

機械学習の数理

カーネル法, 低次元構造, 最適輸送, 生成モデル理論

11. 数理物理

古典/量子力学の厳密理論

C*代数量子論, 散乱, 量子確率

量子場の数理

くりこみ群,構成的QFT, 共形場理論CFT

統計力学の数理

相転移, くりこみ, Ising/Potts, 大偏差

可積分系

逆散乱法,ソリトン, 量子可積分モデル

理論幾何

鏡映対称性,Gromov–Witten, トポロジカル弦

12.生命科学医学社会科学への応用数学

数理生物学

集団動態,進化ゲーム, 反応拡散,系統樹推定

数理神経科学

スパイキングモデル,ネットワーク同期, 神経場方程式

疫学感染症数理

SIR系,推定制御, 非均質ネットワーク

計量経済金融工学

裁定,確率ボラ,リスク測度, 最適ヘッジ, 高頻度データ

社会ネットワーク科学

拡散, 影響最大化,コミュニティ検出

13.シグナル・画像データ科学

信号処理

時間周波数解析,スパー表現,圧縮センシング

画像処理/幾何処理

変動正則化, PDE法, 最適輸送, 形状解析

データ解析

多様体学習,次元削減, トポロジカルデータ解析(TDA

統計機械学習回帰/分類/生成,正則化, 汎化境界

14.教育歴史方法

数学教育学(カリキュラム設計, 誤概念研究,証明教育

数学史(分野別史,人物研究,原典講読)

計算支援定理証明

形式数学(Lean,Coq, Isabelle), SMT,自動定理証明

科学哲学数学実在論/構成主義,証明発見心理

Permalink |記事への反応(0) | 10:29

このエントリーをはてなブックマークに追加ツイートシェア

2025-01-26

次元データ空間における幾何学構造

次元データ空間幾何学構造は、情報科学におけるテーマであり、非線形性、トポロジーリーマン多様体などの数学概念必要とする。

非線形多様体とその埋め込み

次元データはしばしば非線形多様体としてモデル化される。

このような多様体は、局所的には線形空間として振る舞うが、全体としては非線形構造を持つ。

例えば、データがN次元ユークリッド空間に埋め込まれている場合、その埋め込みは必ずしもユークリッド距離に基づくものではなく、リーマン計量を用いた距離関数適用されることが多い。

このアプローチは、確率分布パラメータ空間リーマン多様体として扱うことで、統計的推定機械学習アルゴリズム設計に新たな視点提供する。

フィッシャー情報行列と曲率

リーマン多様体上の最適化問題を扱う際には、フィッシャー情報行列重要役割を果たす。

フィッシャー情報行列は、パラメータ空間内の点での曲率を測定し、その逆行列最適化アルゴリズムにおける収束速度に影響を与える。

具体的には、フィッシャー情報行列固有値分解を通じて、多様体上の最適化問題における局所的な最適解の安定性や収束性を評価することが可能となる。

ポロジカルデータ解析(TDA

ポロジカルデータ解析は、高次元データ幾何学構造理解するための強力な手法である

特に、持続的ホモロジーやベッチ数といったトポロジー概念を用いることで、高次元空間内でのデータポイント間の関係性を捉えることができる。

持続的ホモロジーは、データセットが持つトポロジカル特徴を抽出し、その変化を追跡する手法であり、多様体の形状や穴の数などを定量化することが可能である

スケール不変性とフィルタリング

TDAでは、スケール不変性が重要特性となる。

これは、異なるスケールデータを観察しても同じトポロジカル特徴が得られることを意味する。

具体的には、フィルタリング手法(例:距離行列やk近傍グラフ)を用いてデータポイント間の関係性を構築し、その後持続的ホモロジー計算することで、高次元空間内でのデータ構造を明らかにする。

次元空間における距離関数とその最適化

次元空間では、距離関数選択が極めて重要である

ユークリッド距離だけでなく、マンハッタン距離コサイン類似度など、多様な距離関数存在し、それぞれ異なる幾何学特性を反映する。

特に、高次元空間における距離関数選択は、クラスタリングアルゴリズムや分類器の性能に直結するため、その理論根拠実用的応用について深く考察する必要がある。

構造化された距離関数

さらに進んだアプローチとして、構造化された距離関数(例:Mahalanobis距離)やカーネル法による非線形変換が挙げられる。

これらは、高次元空間内でのデータポイント間の関係性をより正確に捉えるために設計されており、多様体学習カーネル主成分分析(KPCA)などで活用されている。

Permalink |記事への反応(0) | 21:31

このエントリーをはてなブックマークに追加ツイートシェア

2022-09-09

anond:20220909224423

あと一応指摘しておくとわざわざ回帰の式にφを使っているのは何か意味があるんだろうか?y=ax+εとせずわざわざφとか使っている時点で非線形関数を考えているのかと思うが、例えばφ(x)=x^2などとすればσ=0でも相関がとても小さくなる例が作れる 急にカーネル法の話でも始めるつもりだろうか

一般線形モデルに決まってんだろ。マジ頼むよほんと。

Permalink |記事への反応(1) | 23:26

このエントリーをはてなブックマークに追加ツイートシェア

anond:20220909220849

軽い気持ちで相関って書いたら突っかかられて面倒になってきたな

コメントでの記法準拠するけど、ここで相関の強さという語は普通想定されると思われる相関係数の大小を指していると想定する

まず回帰確率モデルがxを確率的に扱わないというのは単に解きやすいから初等的にはそういう仮定を置くというだけであって、一連の変数誤差モデルなどx側にも誤差の入る確率モデル普通に使われている

あとこういう統計推論の文脈で用いられる「分散」という語は確率変数分散ではなく標本分散なので、背後に何の確率モデル仮定するかどうか関係なく形式的計算される xが広がれば標本分散は大きくなるので分散無関係という説明意味が分からない

一応指摘しておくとわざわざ回帰の式にφを使っているのは何か意味があるんだろうか?y=ax+εとせずわざわざφとか使っている時点で非線形関数を考えているのかと思うが、例えばφ(x)=x^2などとすればσ=0でも相関がとても小さくなる例が作れる 急にカーネル法の話でも始めるつもりだろうか

もともとの文脈では分散の話をしていなかったし、(あなたが持ち出した)分散という語を使って議論するのが正しいわけではないと思うが、単に相関係数分散でスケーリングをかけているので(あなたのいうところの)分散考慮している、という程度の意味で書いた。そもそも回帰係数と相関係数は別の概念でしょう

分散は単にスケーリングとしてしか作用しないから、おそらくあなたの言いたかたことは分散ではなく分布考慮できるかどうかではないかと思うが、共分散部分が分布の影響をきちんと考慮してくれている。

あと相関の強さについても度合は何も言及していなかったのに、突っかかりたいだけでしょうあなた

他人に向かってバカさらしちゃったなとか嘲る前に、その程度の知識マウントを取ろうとするのをやめたほうがいいと思う

すぐ専門用語を持ってきて煙に巻こうとするのはよくないしきちんと勉強している人からは本当に滑稽に見えるよ

Permalink |記事への反応(1) | 22:44

このエントリーをはてなブックマークに追加ツイートシェア

2019-06-30

anond:20190630010531

凸最適化になってるか(なってない場合一般的最適化をどう構成するか)とか、カーネル法非線形写像した嵜が気軽に"無限次元"とかいうけどどういう意味無限なのか(例えばそもそもその"内積"は写像したさきの空間で完備化されてるのか、もっと言えば可分なヒルベルト空間でなければ高々可算個の直交基底の存在すら一般には言えないけど計算機表現するときには有限次元で近似するわけでそのへんどうするのか)とか、そういう数学的に素性のいい空間での議論になってないと色々厳しい気が。(いや私もディイイイィィーーープラーーーーーニングは全然知らないのでそのへんどうなってるのか無知なんだけど)

Permalink |記事への反応(1) | 01:26

このエントリーをはてなブックマークに追加ツイートシェア

2010-06-29

http://anond.hatelabo.jp/20100628022930

なんか話が合いそうだなと思ったので返信。増田なのがちょっと勿体ない気もするけど。

ちなみに俺のバックグラウンドを書いておくと、学生時代の専攻は工学系なんだけど、それにしてはオーバースペックなぐらい数学をかじってた感じの方面。あんまり詳しく書くと特定されそうなんでこの程度で勘弁ね。

"Pattern Recognition andMachine Learning"のビショップ物理出身だけど、あの年代は確かにそういう色が強かったのかもしれない。

確かにその種の傾向は上の世代までかもしれないね。

ビショップ物理出身なのは知らなかったけど、それ聞いてなんか合点のいく気がした。何か妙に数学へのマニアックなこだわりの片鱗が見える割に、数学屋から見ると妙な記号法を使うんだよね、あの人。

工学としては例外的に高度な(物理の道具としてはまあ普通の)数学を使ったりするので

全然高度じゃないです><

いや、だからあくまで「工学として」ね。線型代数と、微積の「計算」以外を使うことって工学ではそうないでしょ(フーリエ変換とかだって工学の文脈では所詮「計算」だもんね。)。

制御理論とか機械学習では、関数解析の概念がちょっとだけ出てくるけど、あんなんでも数学屋にとってはオアシスだね。

もっとも、カーネル法関係ではいつも申し訳程度にMercerの定理が言及されているのを見ると「なんだかなあ」っていつも思うけど。

情報幾何とかは(無駄に)高度だけど、実用性はあんまないオナニー(しかも日本でしか流行ってない)感があるし。

そうそう、あれに限らず統計学理論の一部にはものすごく違和感あるんだよね。

増田だから書けるけど、情報幾何なんて「お前、双対接続って言いたいだけちゃうんかと」って感じだし、他にも色々、何でも抽象化して一般化すりゃいいってもんじゃないんだぞと言いたくなることが色々。

統計学理論機械学習パターン認識の関係は、数理物理理論物理実験物理の関係に似てる気がするんだよね。しかも統計学場合普遍的に綺麗な構造なんてものがあると思えないだけに余計に始末が悪い。「ひも理論実験で検証できないから科学ではない」って批判があるらしいけど、統計学にも同じ批判されても仕方ない理論が色々あるよね。データから何かを推定する理論なのに、データがどれだけあっても実用的には絶対まともな結果が出せないモデルとか。

CVレイトレーシングで経路積分使って云々というのもあったけど(その人はGoogleに言ってアドセンスかなんか作ってるらしい)、あれもまぁ適当パス空間で平均とるだけって感じがするし…。

CVはまあ何でもありの世界だよね。誰か無限次元リー群とか使ってみてくれないかなと思う。というか俺自身が一度やろうとして無意味なことに気づいてやめたんだけどさ。

結局性能はあんま変わらないからもっとシンプルモデルでいいよとかなってそう。

イジングモデルとかその辺は不勉強なんであまりよく知らないんだけど、一般的にその手のモデルは、性能が変わらないだけならいいけど、計算量がどうとかデータ量がどうとかで事実上使えなかったりすることが多いんだよね。着想として物理からアイディアを持ってくるのはいいんだけど、物理から持ってきたアイディアなら必ず筋がいいはずみたいな思いこみ(そう思いたくなる気持ちはよくわかるけど)はどうかと思う。

普通に日本の伝統新卒採用でそういう会社に行く人はいるけど、やってることは工学とかあるいは良くわからない専攻の人と同じな気がする。これはちょっと曖昧だけど。

うん、そうなってしまうのは仕方ないでしょうね。

ただ逆に、変わり種のバックグラウンド持ってる人は道具箱が豊富だから、新しいこと思いつく可能性もあるわけで、採用されるとしたらむしろそれを買われてじゃないかな。俺自身、工学部の人は普通は絶対知らない数学を色々知ってるので、それをどうにか武器にできないかいろいろ試行錯誤中だよ。というか特許とかの形で発表したのもすでにあるけどね。

特に情報系の分野は実装力で評価されることが多いし…。実装力は数値計算得意とかそういうのとは全く別のスキルだよね。プログラミングマニア的な要素が必要。

分野にもよるけどね。情報システム計算機自体を専門にして、ハードとかインターフェイスに近い部分をやってたらどうしてもそうなるけど、信号とか画像とか音声とか言語とかの処理のコア部分を作るときにはコーディング能力よりも紙と鉛筆能力の方が大事・・・、だと思いたい。

どうもパソコンマニア的気質は中高生のときに飽きてしまって、「PCパーツの種類とか流行言語とか覚えたってどうせ10年したらすぐに廃れるんだから」という感じで、余りはてな民的に新しいネタ追いかけたくないんだよね。クロージャって何ですか、ああそうですね閉包ですね、集合の内部と境界の和集合ですねっていう感性の持ち主なので。正直、コーディングは単純作業と認識してます。

Permalink |記事への反応(0) | 01:22

このエントリーをはてなブックマークに追加ツイートシェア

2010-03-08

http://anond.hatelabo.jp/20100308201201

(countableだと)なんとなくカーネル法とか使って主成分分析とかできそうな気がするじゃん。知らないけど。

Permalink |記事への反応(0) | 20:14

このエントリーをはてなブックマークに追加ツイートシェア

 
ログインユーザー登録
ようこそ ゲスト さん
Copyright (C) 2001-2025 hatena. All Rights Reserved.

[8]ページ先頭

©2009-2025 Movatter.jp