
はてなキーワード:オルガネラとは
睡眠欲求はミトコンドリアの機能と好気性代謝に深く関連していることが示唆されています [1-3]。
*研究者たちは、**休息状態と睡眠不足状態のハエの脳から単一細胞のトランスクリプトームを解析**しました [1, 4]。
* その結果、睡眠を誘導・維持する役割を持つ**背側扇状体投射ニューロン(dFBNs)**において、睡眠不足後に発現が上昇する転写産物のほとんどが、**ミトコンドリア呼吸とATP合成に関わるタンパク質をコードしている**ことが明らかになりました [1, 5]。
*対照的に、シナプス集合やシナプス小胞放出に関わる遺伝子産物は選択的にダウンレギュレーションされていました [5]。
* このトランスクリプトームの「睡眠喪失シグネチャー」はdFBNsに特有のものであり、他の脳細胞集団では検出されませんでした [5]。
*睡眠不足は、dFBNsのミトコンドリアの**断片化、サイズ・伸長・分岐の減少**を引き起こしました [1, 6]。
* また、ミトコンドリアの分裂を促進するDrp1が細胞質からミトコンドリア表面に移動し、**ミトファジー(機能不全のミトコンドリアの除去)と小胞体との接触部位が増加**しました [1, 6-8]。これらの形態変化は、回復睡眠後に可逆的であることが示されています [1, 7]。
* **目覚めている間、dFBNsではATP濃度が高くなる**ことが示されました [2]。これは、神経活動が抑制されATP消費が減少するためと考えられます [1, 2]。
* 高いATP濃度は、ミトコンドリアの電子伝達鎖における**電子過剰**を引き起こし、**活性酸素種(ROS)の生成を増加**させます [1, 2, 9]。このROS生成がミトコンドリアの断片化の引き金になると考えられています [10]。
*CoQプールからの**余分な電子の排出経路を設ける(AOXの発現)ことで、基本的な睡眠欲求が軽減**されました [1,10,11]。また、ミトコンドリアのATP需要を増加させる(脱共役タンパク質Ucp4AまたはUcp4Cを過剰発現させる)ことで、**睡眠が減少**しました [11]。逆に、電子ではなく光子でATP合成を促進すると、dFBNsにおけるNADH由来の電子が冗長となり、**睡眠が促進**されました [1,11]。
* dFBNsのミトコンドリアを**断片化させる**(Drp1の過剰発現やOpa1のRNAiによる減少)と、**睡眠時間が減少し、睡眠剥奪後のホメオスタティックな回復も抑制**されました [1,12-14]。同時に、dFBNsのATP濃度は低下し、神経興奮性も低下しました [1, 14, 15]。
*ミトコンドリアの**融合を促進する**(Drp1のノックダウンやOpa1とMarfの過剰発現)と、**基礎睡眠および回復睡眠が増加**し、覚醒閾値が上昇しました [1,12-14]。これによりdFBNsの神経興奮性が高まり、睡眠を誘発するバースト発火が増加しました [1, 14]。
*ミトコンドリアの融合には、カルジオリピンから生成される**ホスファチジン酸**が重要であり、そのレベルを調節するタンパク質(zucchiniやMitoguardin)への干渉も睡眠喪失を再現しました [16]。
*睡眠は、好気性代謝の出現と共に、特にエネルギーを大量に消費する神経系において発生した古代の代謝的必要性を満たすために進化した可能性が示唆されています [3]。
*睡眠量と質量特異的酸素消費量との間に経験的なべき乗則が存在し、これは哺乳類においても睡眠が代謝的役割を果たすことを示唆しています [3]。
* **ヒトのミトコンドリア病の一般的な症状として、「圧倒的な疲労感」が挙げられる**ことも、この仮説と一致しています [3,17]。
*哺乳類における飢餓関連ニューロン(AgRPニューロン)とdFBNsの間のミトコンドリアダイナミクスの類似性は、**睡眠欲求と空腹感の両方がミトコンドリア起源を持つ**可能性を示唆しています [18]。
この研究は、睡眠が単なる行動や神経学的現象ではなく、**細胞レベルでのエネルギー代謝、特にミトコンドリアの機能に深く根ざした生理学的プロセス**であることを示しています [1, 3]。 <h3>o- **</h3>
この研究は、**睡眠が好気性代謝の避けられない結果である**という画期的な仮説を提唱し、睡眠圧の根源がミトコンドリアの機能にある可能性を探求しています [1, 2]。これまで物理的な解釈が不足していた睡眠圧のメカニズムを解明するため、研究者らはショウジョウバエ(*Drosophila*)をモデルに、脳内の分子変化を詳細に分析しました [3]。
研究の中心となったのは、睡眠の誘導と維持に重要な役割を果たす特定のニューロン集団、**背側扇状体投射ニューロン(dFBNs)**です [1, 3]。休眠状態と睡眠不足状態のハエのdFBNsから単一細胞のトランスクリプトームを解析した結果、驚くべきことに、**睡眠不足後にアップレギュレートされる転写産物が、ほぼ独占的にミトコンドリアの呼吸とATP合成に関わるタンパク質をコードしている**ことが判明しました [1, 4]。これには、電子伝達複合体I〜IV、ATP合成酵素(複合体V)、ATP-ADPキャリア(sesB)、およびトリカルボン酸回路の酵素(クエン酸シンターゼkdn、コハク酸デヒドロゲナーゼBサブユニット、リンゴ酸デヒドロゲナーゼMen-b)の構成要素が含まれます [4]。対照的に、シナプス集合、シナプス小胞放出、およびシナプス恒常性可塑性に関わる遺伝子産物は選択的にダウンレギュレートされていました [4]。このミトコンドリア関連遺伝子のアップレギュレーションというトランスクリプトームのシグネチャは、他の脳細胞タイプ(例:アンテナ葉投射ニューロンやケーニヨン細胞)では検出されず、dFBNsに特有の現象でした [4]。
これらの遺伝子発現の変化は、ミトコンドリアの形態と機能に顕著な影響を与えました。睡眠不足は、dFBNsのミトコンドリアのサイズ、伸長、および分岐を減少させるという**ミトコンドリアの断片化**を引き起こしました [5]。さらに、ミトコンドリア外膜の主要な分裂ダイナミンである**ダイナミン関連タンパク質1(Drp1)**が細胞質からミトコンドリア表面へ再配置され、オルガネラの分裂を示唆するミトコンドリア数の増加も確認されました [5]。加えて、睡眠不足は**ミトコンドリアと小胞体(ER)間の接触数の増加**および損傷したミトコンドリアを選択的に分解するプロセスである**マイトファジーの促進**を伴いました [1, 6]。これらの形態学的変化は、その後の回復睡眠によって可逆的であり、電子伝達鎖における電子溢流(electronoverflow)の設置によって緩和されました [1, 5]。
本研究は、**睡眠と好気性代謝が根本的に結びついている**という仮説に、客観的な支持を提供しています [7]。dFBNsは、その睡眠誘発性スパイク放電をミトコンドリアの呼吸に連動させるメカニズムを通じて睡眠を調節することが示されています [7]。このメカニズムの中心には、電圧依存性カリウムチャネルShakerのβサブユニットである**Hyperkinetic**があります。Hyperkineticは、ミトコンドリア呼吸鎖に入る電子の運命を反映するNADPHまたはNADP+の酸化状態を反映するアルド-ケト還元酵素であり、dFBNsの電気活動を調節します [7-9]。
ATP合成の需要が高い場合、大部分の電子はシトクロムcオキシダーゼ(複合体IV)によって触媒される酵素反応でO2に到達します [7]。しかし、少数の電子は、上流の移動性キャリアであるコエンザイムQ(CoQ)プールから時期尚早に漏洩し、スーパーオキシドなどの**活性酸素種(ROS)**を生成します [7,10]。この非酵素的な単一電子還元の確率は、CoQプールが過剰に満たされる条件下で急激に増加します [7]。これは、電子供給の増加(高NADH/NAD+比)または需要の減少(大きなプロトン動起力(∆p)と高ATP/ADP比)の結果として発生します [7]。
dFBNsのミトコンドリアは、覚醒中にカロリー摂取量が高いにもかかわらず、ニューロンの電気活動が抑制されるためATP貯蔵量が満たされた状態となり、この**電子漏洩**のモードに陥りやすいことが分かりました [7]。実際、遺伝子コード化されたATPセンサー(iATPSnFRおよびATeam)を用いた測定では、一晩の睡眠不足後、dFBNs(ただし投射ニューロンではない)のATP濃度が安静時よりも約1.2倍高くなることが示されました [7,11]。覚醒を促す熱刺激によってdFBNsが抑制されるとATP濃度は急激に上昇し、dFBNs自体を刺激して睡眠を模倣するとATP濃度はベースライン以下に低下しました [7,11]。
これらの結果は、**ミトコンドリア電子伝達鎖に入る電子数とATP生成に必要な電子数との不一致が、睡眠の根本原因である**という強力な証拠を提供するものです [12]。
ミトコンドリアの分裂と融合のバランスの変化が、睡眠圧の増減を引き起こすNADH供給とATP需要の不一致を修正するフィードバックメカニズムの一部であるならば、dFBNsにおけるこれらの恒常的応答を実験的に誘発することは、睡眠の**設定点**を変化させるはずであるという予測が立てられました [13]。
この予測を検証するため、研究者らはミトコンドリアのダイナミクスにおいて中心的な役割を果たす3つのGTPase(分裂ダイナミンDrp1、内膜タンパク質Opa1、外膜タンパク質Marf)を実験的に制御しました [13]。
また、ミトコンドリアの融合反応において重要な役割を果たす**ホスファチジン酸**の関与も明らかになりました [17]。睡眠不足の脳では、この脂質が枯渇することが知られています [17]。ミトコンドリアホスホリパーゼD(mitoPLD)であるzucchini、または触媒的に活性なmitoPLDを安定させたり、他の細胞膜からミトコンドリアにリン脂質を輸送したりする外膜タンパク質Mitoguardin(Miga)の発現に干渉すると、これらのニューロンのタンパク質ベースの融合機構が標的とされた場合に見られた睡眠損失が再現されました [17]。これは、**融合反応におけるホスファチジン酸の重要性**と、**睡眠調節におけるミトコンドリア融合の重要性**を裏付けています [17]。
本研究は、**睡眠が好気性代謝の避けられない結果である**という説に、強力な経験的証拠を提供するものです [1, 2]。好気性代謝は、地球の大気中の酸素濃度が2回大きく増加した後、真核生物が電子伝達から得られる自由エネルギー収量を最大化することを可能にした画期的な進化であり、これにより、電力を大量に消費する神経系が出現し、それに伴って睡眠の必要性が生じたと考えられています [2]。睡眠はその後、シナプス恒常性や記憶の固定などの追加機能も獲得した可能性がありますが [2]、哺乳類においても1日の睡眠量と質量特異的O2消費量を関連付ける経験的な**べき乗則**が存在し、これは睡眠が古代の代謝目的を果たすことを示唆しています [2, 18, 19]。
もし睡眠が本当に代謝的な必要性を満たすために進化したのであれば、睡眠とエネルギーバランスを制御するニューロンが類似のメカニズムによって調節されることは驚くべきことではありません [20]。哺乳類の視床下部において、食欲増進性ニューロンと食欲不振性ニューロンのミトコンドリアは、分裂と融合の位相が逆のサイクルを経ており、これらのサイクルはマウスのエネルギーバランスの変化と結びついています [20, 21]。これは、ショウジョウバエのdFBNsにおけるミトコンドリアの分裂と融合のサイクルがハエの睡眠バランスの変化と結びついているのと同様です [20]。AgRPニューロンの電気的出力は、体重増加と脂肪蓄積を促進するためにミトコンドリア融合後に増加しますが、これはdFBNsのPermalink |記事への反応(0) | 19:25
自然の権利(Rights ofNature)というものがあります。
この考え方は、自然環境やその一部が法的権利を持ち、人間によって保護されるべき主体として認識されるべきだというものです。
伝統的な法体系が自然環境を保護するために十分ではないという認識から発展しました。
自然を法的主体として認めることで、自然そのものが法的に保護される権利を持ち、人間活動による環境破壊から守られることを目指しています。
ニュージーランドでは、ワンガヌイ川が法的権利を持つ主体として認められました。
インドでは、ガンジス川とヤムナ川に法的な人格が認められました。
アメリカでは、エリー湖の権利を認める条例が住民投票で可決されました。
参議院議員で社民党党首でもある福島みずほさんは、以前から福島原発より太平洋へ放出される「処理水」を、
「汚染水」であるとして批判しています。最近も(2024-07-28)、Twitterに反対集会について紹介しています。
「汚染水の放出停止と太平洋地域との対話を/官邸前緊急行動に40人」
さて、「汚染水」を海洋放出されているとされている太平洋を自然の権利の主体として、
福島みずほさんを科学的根拠のない批判によって太平洋の名誉を棄損していると訴えることは可能でしょうか。
自然の権利の法律は、自然環境の保護と維持を目的としています。
これには、生態系の健康を守ることや、人間活動による環境破壊を防ぐことが含まれます。
名誉棄損は、個人または法人の社会的評判に対する損害を扱うものであり、自然の権利の法律の範囲外です。
自然が法的主体として認められる場合、その権利は環境保護に関連するものであり、名誉や評判といった概念は適用されません。
自然の法的権利は、主にその存在、保護、再生に関するものであり、社会的な名誉や評価に関するものではありません。
名誉棄損は、個人や法人の評判を傷つける虚偽の発言に関するものであり、自然環境には直接適用されない概念です。
自然環境は社会的な評判を持たず、その名誉を守るための訴訟は現行の法律体系には含まれていません。
自然環境は、生態系サービスと呼ばれる多くの便益を提供します。
供給サービス: 食料、水、木材、医薬品などの直接的な物質的資源。
調整サービス:気候の調整、洪水や干ばつの緩和、水質の浄化など。
文化サービス:レクリエーション、観光、精神的価値、教育的価値。
自然環境自体に、自然の権利と呼ばれる権利を付与しその保護を図るという運動の目的は、
何故、自然の保護を行うのかと言えば、自然環境が人間に様々な生態系サービスを供給しているからと考えられます。
様々な供給サービスの中で、文化サービスに関してはその自然環境が持つ評判、名誉がベースとなっており、
太平洋自体の自然の権利を侵害していると考えることもできるのではないでしょうか。
人間ではないものに、法的な権利の主体として取り扱うという自然の権利は面白い概念だなとは思います。
そもそも、人間ではない法人には権利の主体となって当然という理解があるのに、何故自然にはそういう感覚的な理解はされないのか。
そういう、人間の法的感覚、人権感覚みたいなものを探るにあたって、
自然の権利の左派的な価値観の影響があるのか、今回は自然の権利を右派的な価値観に適応してみました。
その結果は、うーん。よくわからんなーという感じですけれども。
培養した脳細胞であるところの脳オルガネラにも権利の主体となりえるという論考も見たことありますね。
真面目にこのような制度を運用しようとした場合には、要件をかなり厳しくしないと、