研究者たちは、まず*Messor ibericus*の働きアリが非常に高いヘテロ接合性を示すことを発見しました [6]。これは、遺伝子解析によって、*M. ibericus*の働きアリ(164個体)が、女王アリや他の4種の女王アリ・働きアリ(127個体)と比較して、43,084の多型部位において平均で15倍も高いヘテロ接合性(平均0.797対0.047)を持つことが示されたためです [6, 7a]。この高いヘテロ接合性は、*M. ibericus*の働きアリが**雑種である**ことを強く示唆しています [6]。第一世代雑種を検出するための分析も、すべての*M. ibericus*の働きアリを雑種であると特定しました [6]。
雑種である働きアリの起源を特定するために、母系遺伝するミトコンドリアゲノムの系統解析が行われました [7]。その結果、すべての雑種働きアリが*M. ibericus*の有性生殖個体と同じミトコンドリアゲノムを共有していることから、**母系は*M. ibericus*である**ことが示唆されました [7]。次に、雑種ゲノムの母系および父系アレルを分離し、核DNAの系統解析を実施したところ、すべての父系アレル(164個体)が*M. structor*の個体と強固なクレードを形成し、**父系は*M. structor*である**ことが確認されました [7]。さらに、5,856遺伝子(44,191変異)を用いた集団構造分析では、*M. ibericus*のコロニーの働きアリが、*M. ibericus*と*M. structor*からほぼ等しい集団祖先割合(それぞれ平均0.49と0.51)を持つことが明らかになり、彼らが第一世代雑種であることがさらに裏付けられました [8, 7a]。
これらの結果は、*M. ibericus*が働きアリの生産において**異種交配に依存している**ことを示唆しています [8]。これは、女王アリが別の系統や種の精子を利用して働きアリを生産する「精子寄生 (sperm parasitism)」の既知の事例と同様です [8, 9]。しかし、*M. ibericus*の場合、この依存は**厳密に*M. structor*のオスに限られており**、この2種は系統的に遠く、非姉妹種であることが指摘されています [9,11c]。
さらに驚くべきことに、これらの2種は正確に同じ分布域を共有していません [8,10,11]。地中海地域を含む南ヨーロッパの広範囲で、父系種である*M. structor*が全く存在しないにもかかわらず、*M. ibericus*の雑種働きアリが発見されています [9,17b]。特に、イタリアのシチリア島では、最も近い*M. structor*の生息地から1000km以上離れた場所で第一世代の雑種働きアリが見つかっており、このような孤立した地域で女王アリがどのように異種交配を行っているのかという疑問が生じました [9, 7b]。この謎を解明するために、研究者たちは*M. ibericus*のコロニーから得られたオスを詳細に調査しました [8]。
形態学的および分子学的分析の結果、*M. ibericus*の女王アリは、働きアリの生産に必要とされる**M. structorのオスも産んでいる**ことが明らかになりました [5]。26の*M. ibericus*コロニーから採取された132匹のオスを調査したところ、顕著な形態的二型性(pilosty)が観察されました [10,11a,11b]。サンプリングされたオスの44%は毛深く(*M. ibericus*に属する)、残りの56%はほとんど毛がありませんでした(*M. structor*に属する) [5]。62匹の毛深いオスと24匹の毛のないオス核ゲノムを用いた系統解析では、この2つの形態が完璧に異なる2種に対応していることが示されました [5]。毛深いオスはすべて*M. ibericus*に、毛のないオスはすべて*M. structor*に属しており、これら2種は500万年以上前に分岐した非姉妹種であることが推定されています [10,11c]。
1. **共通のミトコンドリア**: *M. ibericus*の巣で発見された*M. structor*のオスは、*M. ibericus*の巣の仲間と同じミトコンドリアを共有しており、コロニー全体の共通の母親が*M. ibericus*であることを示しています [12, 13]。このような核-ミトコンドリアゲノムの不一致は、*M. ibericus*のコロニーで発見されたオスに特有のものであり、*M. structor*が自身の種のコロニーで発見された場合には観察されませんでした [12]。
2. **卵の遺伝子型解析**: 5つの*M. ibericus*実験コロニーから採取された286個の卵または幼虫の遺伝子型を解析したところ、11.5%が exclusively *M. structor*の核ゲノムを含んでいました [12]。16匹の女王アリを隔離し、24時間後に産んだ卵の遺伝子型を解析した結果、9%の卵が exclusively *M. structor*のDNAを含んでいることが確認されました [12]。
3. **直接観察**: 1匹の*M. ibericus*女王アリが率いる実験コロニーを18ヶ月間観察したところ、生殖能力のある成体オスに発達した7個の卵のうち、2個が*M. structor*(毛なし)のオス、3個が*M. ibericus*(毛あり)のオスであることが確認されました [14]。これらのオスは形態的・遺伝子的に確認されており、母親女王アリのゲノムは exclusively *M. ibericus*と一致していました [14]。
ハチ目昆虫のオスは通常、受精していない卵から母親の核ゲノムを受け継ぎますが [15, 16]、*M. ibericus*の女王アリは自身の核ゲノムを伝達することなくオスを生産できることが示されました [15]。この観察は、オスが胚の核遺伝物質の唯一の供給源となる「**アンドロジェネシス(雄性発生、すなわちオスのクローン性)**」を示唆しています [15,17]。他の生物群でも母系DNAを持たない胚が観察されていますが、アリにおいて異種間のアンドロジェネシスが確認されたのは今回が初めてです [15, 18-21]。これは、交配嚢に貯蔵された他種由来の精子からのオスクローニングが種を越えて起こることを意味します [15]。この説明と一致して、*M. ibericus*の女王アリは多配偶者性であり、*M. ibericus*と*M. structor*の両種のオスと交配し、両種の精子を交配嚢に貯蔵していることが確認されました [15]。
働きアリ生産のための義務的な異種交配と、異種間クローニングの組み合わせは、次のようなシナリオを示唆しています。まず、*M. ibericus*の女王アリは他種の精子を貯蔵し、その後、この精子からオスをクローンとして生産し始めたというものです [22]。この経路は、女王アリが共存する系統や種の精子を働きアリ生産に利用する、義務的または選択的精子寄生(sperm parasitism)の広範な観察と一致します [4, 9, 18-20, 22-26]。
このシステムの進化史は、まず「**性的寄生 (sexual parasitism)**」として始まり、その後「**自然な異種間クローニング**」へと発展したと考えられます [1, 25]。祖先的な状態では、*M. ibericus*は共存する*M. structor*のコロニーから精子を搾取していました(図3a) [15, 16a, 21]。これは、他の*Messor*種でも観察されている現象です [12, 22, 27]。しかし、進化した状態では、*M. ibericus*の女王アリは、自身が依存する種を直接生産するようになり、その結果、***M. ibericus*のコロニー内で*M. structor*のクローン系オスが維持される**ようになりました(図3b) [15, 16b,17, 84c]。
このクローン系オスの出現を確認するため、*M. structor*の核ゲノム系統樹の2つの主要な下位区分が調べられました [17, 16c]。予想通り、一方の下位区分はクローン系に相当し、*M. ibericus*のコロニー内で見つかった、ほとんど同一の*M. structor*のオスのみで構成され、すべて*M. ibericus*のミトコンドリアを持っていました(24個体) [17, 16b, 16c, 80]。対照的に、「野生型」系統は、自身の種のコロニーで見つかったすべての*M. structor*の階級をグループ化していました(53個体) [17, 16a, 16c, 80]。
ほとんどの雑種働きアリがクローン系オスによって生み出されている(164個体中144個体)一方で、一部(164個体中20個体)が野生型オスによって生み出されているという事実は、祖先的状態が最近まで存在していたことを裏付けています [17, 16c]。祖先的状態の事例は、両種がまだ共存する限られた地理的地域(例:フランス東部)に限定されていました [17, 7b, 84b]。対照的に、進化した状態の事例はヨーロッパ全域に広まっており、クローン系オスを維持することで、*M. ibericus*が*M. structor*の本来の生息域を超えて急速に拡大できたと考えられます(例:地中海ヨーロッパ) [17, 7b, 84c]。この経路は、*M. ibericus*が*M. structor*のオスを自身のライフサイクルに組み込み、野生から搾取するのではなく、クローン系として維持するという点で、**家畜化 (domestication)**に似ているとされています [9,28]。
この見解を支持するように、クローン系は野生型系統と比較して、**極めて低い遺伝的多様性**と**高い遺伝的負荷**を示しました(平均同義語ヌクレオチド多様性πsが0.00027対0.0014、非同義語対同義語ヌクレオチド多様性πn/πs比が平均0.43対0.21) [23, 29]。このパターンは、クローン種や急速な生息域拡大後、または人間によって維持される家畜化された系統で典型的です [23,30-35]。興味深いことに、クローンオスは形態的にも異なっていました。*M. ibericus*の巣の仲間と異なるのと同様に、野生型の*M. structor*オスと比較しても毛が少ないように見えました [18,11, 16d, 16e]。
クローンオスが野生のメスと交配することで「家畜化された」状況から脱出できるかどうかを評価するために、45の*M. structor*ゲノムの詳細な分析が行われました [24]。その結果、クローン系と野生型系統の間に雑種は特定されず、そのような出来事は現在存在しないか、極めてまれであることが確認されました [24]。しかし、系統解析や集団遺伝学的構造分析など、さらなる分析は、クローンオスが依然として*M. structor*の**家畜化された系統**であるという考えを支持しています [24]。全体として、これは*M. ibericus*のメスが、形態的にも遺伝的にも異なる最大3種類のオス(*M. ibericus*オス、「家畜化された」*M. structor*オス、「野生の」*M. structor*オス)と相互作用し、そのうち2種類を産み(図2)、3種類すべてと交配している(図3)ことを意味します [24, 36, 37]。
異種出産への移行は、寄生-共生連続体における性的進化の結果と考えられます [25]。*M. ibericus*は、他の数種の収穫アリと同様に、まず義務的な精子寄生へと移行しました [9,12,23, 25, 40]。これは、女王アリがエピスタシス的非互換性や自己中心的なカースト偏向遺伝子型のために、自力で働きアリを生産する能力を失った状況です [23, 25, 26]。異種出産への最も直接的な経路ではないものの、この状況は相互精子寄生、つまり2つの系統が働きアリ生産のために互いの精子に依存する精子共生の一形態へと進化した可能性があります [12,23, 25, 25]。単純な寄生であれ相互寄生であれ、他種のオスへの依存は女王アリにとって最適ではありません。なぜなら、2種類の異なるオスと交配する必要があり、コロニーの地理的範囲が宿主のそれに制限されるためです [25]。しかし、*M. ibericus*は**自身が求める種のオスを自らのコロニー内で生産する**ことで(図3b)、明確な利点を得ました。これにより、義務的な異種交配を維持しつつ、それに伴う固有の制約を最小限に抑えることができたのです [21, 84c]。
クローンオスは、精子を利用する種のライフサイクルに囚われながらも、*M. ibericus*の生殖努力と育児を通じて自身のゲノムを伝播させます [10]。ある意味で、クローンオスは「**完璧なオス寄生体**」と見なすことができます。なぜなら、彼らはメスの宿主にとって不可欠でありながら、メスの卵を犠牲にして繁殖するからです [10]。互いの配偶子に依存することで、両種はライフサイクルを密接に絡み合わせ、**性的寄生から「性的共依存 (sexual co-dependency)」**へと進化しました [22, 85c]。にもかかわらず、メスはこの関係の条件をコントロールしているようです。卵の遺伝子型解析データは、メスがオスの卵の発達と成熟のタイミングを課していることを示唆しています [10]。このような状況は、*M. ibericus*が最初に野生から搾取した種の繁殖をコントロールするという点で、「**性的家畜化 (sexual domestication)**」に似ていると言えます [10]。
この関係は、家畜化のすべての基準を満たすだけでなく [11,28]、人間による家畜化から地衣類の共生に至るまで、これまで知られている最も顕著な例よりも**はるかに親密で統合されたもの**です [11, 35, 41]。これらの例とは異なり、両パートナーは**義務的な交配相手**であり、家畜化する種は自身の卵細胞質を利用して家畜化される種を直接クローン化しています [11]。このように、自身の細胞質内で異種ゲノムを複製することは、真核細胞内での細胞小器官(ミトコンドリアなど)の細胞内共生的な家畜化を想起させます [11, 42, 43]。したがって、クローンオスは「**超個体レベルの細胞小器官 (organellesat the superorganismlevel)**」と見なすことができ、この異種ゲノムが直接複製するコロニーへと統合された結果であると言えます [11, 44, 45]。これにより、性別、カースト、種に関して最も多様な個体を生産するコロニーが形成され、それぞれが凝集した生殖単位内で専用の役割を担っています [11]。
このように、**ある種が別の種をクローンとして産む必要のある生殖様式**を明らかにするだけでなく、この「**2種からなる超個体 (two-species superorganism)**」は、**個体性の通常の境界**に挑戦しています [11]。個体性における主要な進化的転換は、異なる実体が統合された高次の単位へと進化する際に起こります [11, 46-48]。2つの種がこのような統合された実体の中で性的に相互依存するようになったことで、異種出産への進化は、このような転換が性的家畜化のプロセスを通じてどのように起こり得るかを示す典型的な例となっています [11]。