Movatterモバイル変換


[0]ホーム

URL:


はてラボはてな匿名ダイアリー
ようこそ ゲスト さんログインユーザー登録
< anond:20250816161401 |anond:20250816154922 >

2025-08-16

木を植えた男

研究は、霊長類における協力的な社会的交流中に、**相手の行動を神経学的に予測する能力**に焦点を当てたものです [1, 2]。具体的には、サルが反復囚人のジレンマ(iPD)ゲームに参加する際の背側前帯状皮質(dACC)の神経活動調査し、他者の未知の意図予測する特定ニューロン存在、およびこれらの信号が協力行動にどのように影響するかを探りました [2-4]。

###研究の背景と目的

成功する社会交流の基盤は、互いの意図や行動を予測する能力にあります [2, 5]。このような内的予測建設的な社会行動に不可欠ですが、その単一ニューロンの基盤や因果関係はこれまで不明でした [2]。先行研究では、他者の既知の観察可能な行動(ミラーニューロンなど)や観察された報酬受領符号化するニューロンが示されていますが、**根本的に観察不可能で未知である他者差し迫った意思決定意図表現する細胞存在は、これまで証明されていませんでした** [6]。また、自己他者の決定に関連する神経信号が、相互目標の達成にどのように影響するのか、特に相互利益のある相互作用における単一ニューロンの基盤は探索されていませんでした [7]。

研究は、これらの未解決の疑問に対処するため、iPDゲーム形式的な枠組みとして用いました [3]。このゲームは、結果が両個体相互同時決定に依存し、いずれの決定も個体の結果を保証しないという2つの重要特性を含んでいます [3]。したがって、ゲーム成功するための鍵は、**相手の同時的かつ未知の意図予測する能力**にあります [3]。

研究チームは、前頭葉および側頭頭頂葉領域との広範な結合が対話行動に関与していること、および機能イメージングや切除研究に基づき社会的関心や行動における役割示唆されていることから、dACCに焦点を当てました [4]。

###研究方法

研究では、4組のオスのアカゲザル(*Macaca mulatta*)が繰り返し囚人のジレンマ(iPD)ゲームを行いました [8, 9]。

**タスク設計**

*サルは向かい合って座り、画面に表示される2つの選択肢(協力:オレンジ六角形、裏切り:青い三角形)のいずれかをジョイスティック選択しました [9,10]。

* それぞれのサル選択の結果は、図1Bペイオフ行列に従って、両者の同時選択依存しました [8-10]。

* **相互協力は最高の相互報酬**をもたらし、**一方的裏切りは最高の個人的報酬**をもたらしました [8, 9]。しかし、両者が裏切ると、両者が協力した場合よりも低い報酬を受け取ることになります [8, 9]。

*サル他者選択を、自分自身選択が終わってさらに画面が空白になる遅延期間が経過するまで知ることはできませんでした [11]。

*潜在的聴覚キュー排除するため、サル選択する順序は各試行ランダムに交互に行われました [11,12]。

* 「協力」と「裏切り」の用語は、相互利益または損失の可能性を示すために操作的に定義されました [8, 9]。

**神経記録と刺激**

* 2匹のサルからdACCの**363個のニューロンが記録**されました [13]。

* 電極アレイは、頭蓋切開術によりdACCに外科的に埋め込まれました [14]。

* 神経信号は増幅、バンドパスフィルタリングされ、単一ユニットとして分離されました [15]。

* **電気刺激プロトコル**:dACCへの電気刺激は、3,026回のランダム選択された試行の半分で、ブロック形式実施されました [16,17]。刺激パラメータ100 µA、200 Hzの二相パルスで、1,000ms持続し、選択前の期間を含みました [17]。

**行動統制実験**

* **コンピューター相手との対戦**:サルコンピューター相手との対戦を行い、社会的文脈選択に与える影響を評価しました [18]。

* **別室での対戦**:サルを別々の部屋に配置し、視覚聴覚キュー排除した状態タスクを行わせました [19]。

* **相手選択が既知の条件**:サルが応答する前に相手選択を見ることができた追加の統制バージョン実施されました [20]。

**統計分析**

*ニューロン活動を異なるタスクパラメータがどのように変調させるかを決定するために、ステップワイズ線形回帰分析が主要な手法として用いられました [13, 21, 22]。

* この分析を補完するために、選択確率CP指標分析赤池情報量基準AIC分析、および混合線形回帰モデルの非教師あり集団分析実施されました [23]。

### 主要な研究結果

研究は、行動観察、単一ニューロン記録、集団レベル予測、および神経回路の摂動を通じて、霊長類における社会的意思決定の神経基盤に関する重要な知見を提供しました。

#### 1. 行動の観察と社会的文脈重要

サルは協力よりも裏切り選択する傾向が強い(裏切り:65.3%、協力:34.7%)ものの、**同時に協力する割合は偶然レベルよりも有意に高かった**(17.1%) [24]。

サル相手が以前に裏切った場合、協力を選択する可能性が低かった(26%)が、**両者が先行する試行で協力した場合、最も協力する可能性が高かった**(62.1%) [24]。これは、サル相互協力を返報し、継続的相互利益を追求したこと示唆しています [24]。

**行動統制実験により、社会的文脈サル選択に影響を与えることが確認されました** [18, 19]。

*コンピューター相手との対戦や別室での対戦では、全体の協力の可能性が大幅に低下し、相互協力後の協力の増加は観察されませんでした [18, 19]。これは、サルが他のサルと対戦している場合にのみ、相互利益のある相互作用が増加したことを示しています [19]。

*相手選択が既知の条件では、サル報酬を最大化するために裏切り選択する傾向がありました [20]。

#### 2. dACCにおける単一ニューロン符号

記録されたdACCニューロンのうち185個がタスクに応答しました [13]。

**自己決定を符号化するニューロン**:ニューロン24.3%が、サル自身現在の協力または裏切り選択符号化していました [13]。

**他者の未知の決定を符号化するニューロン**:**ニューロンの32.4%が、相手のまだ未知の選択(協力か裏切りか)によって活動変調されることを示しました** [25]。これらのニューロンほとんど(27.6%)は、サル相手の反応を知る前の「選択後」期間に相手の未知の選択符号化していました [25]。

**自己他者予測ニューロン機能的分離**:自己の決定を符号化するニューロンと、相手の未知の決定を符号化するニューロンの間には**ほとんど重複がありませんでした**(わずか4.3%) [26]。これは、自己および他者関連の計算が**大部分は異なる神経集団によって行われている**ことを示唆しています [26]。

これらの結果は、CP分析AIC分析、および混合線形回帰モデルによる非教師あり集団分析によっても裏付けられました [23]。

#### 3.他者予測ニューロン社会的文脈への感度

別室での統制実験では、タスクに応答する細胞のうち相手選択予測した割合わずか14.3%であり、主たる実験で観察された27.6%と比較して**有意に少なかった** [27]。

対照的に、自己決定を符号化するニューロン割合は別室統制実験有意に増加しました [27]。

この他者予測ニューロン割合の著しい減少は、**他者予測ニューロン社会的文脈有意かつ選択的に敏感である**ことを示しています [27,28]。

#### 4.他者予測ニューロンと期待報酬の分離

研究は、**他者予測ニューロンの応答特性が、サル自己の期待報酬の単純な符号化によっては説明されない**ことを示しました [28, 29]。

他者予測ニューロンは、ペイオフ行列によって決定される4つの報酬条件すべてにおいて、自己報酬によって有意変調されませんでした [30]。

他者予測ニューロンの発火率変調は、相手選択(協力か裏切りか)の違いを考慮すると強く有意でしたが、サル自己の期待報酬の違いに合わせても、全集団と比較して有意な差は見られませんでした [30-32]。

他者予測ニューロンは、結果が確実になった報酬フィードバック間中にも報酬によって強く変調されることはありませんでした [30, 32]。

これらの結果は、**他者予測ニューロン自己決定に関する有意情報符号化せず、他の集団細胞比較して社会的文脈に非常に敏感である**という知見によってさら裏付けられています [28]。

#### 5. dACC集団による相手試行ごとの予測精度

dACCの活動は、集団全体で考慮すると、サル自身選択相手選択試行ごとに有意予測しました [33]。

線形デコーダを用いて集団活動から予測を行った結果、dACC集団は記録されたサル自身現在選択を最大66.1%の精度で予測しました [33]。

驚くべきことに、集団活動は**相手のまだ未知の選択を最大79.4%の精度で正しく予測しました** [33]。

相手の未知の選択予測は、自己現在選択予測よりも**有意に正確でした** [33]。

他者予測ニューロンのサブセットのみにデコーダ限定しても、相手の決定の予測精度は78.1%と高いままでしたが、自己の決定のデコード精度は大幅に低下しました(54.7%) [34]。これは、他者予測ニューロン機能役割自己選択符号化する細胞との機能的分離をさらに支持します [34]。

サルが先に選択した試行のみを考慮しても、相手の未知の選択予測精度は70.7%と高く維持されました [12]。これは、予測相手選択を明らかにする潜在的な暗黙の信号アーティファクトである可能性を排除します [12]。

#### 6. 行動デコーダ過去相互作用の追跡

行動履歴に基づくデコーダは、相手の未知の同時選択を最大79.8%の精度で予測でき、**神経デコードの精度と類似していました** [35]。

神経予測と行動予測の間の試行ごとの相関は、両者の過去選択に基づいて有意であり、**神経予測単一個体過去の応答や報酬ではなく、両者の過去相互作用に基づいている**ことを示唆しています [35]。

dACC内の多くのニューロンが、サルの以前の選択の動的な記録を保持していました [36]。

#### 7. dACCの破壊相互利益のある相互作用に選択的に影響

dACCへの電気刺激は、サルの協力的選択可能性を減少させました(決定比が0.53から0.43に低下) [16]。

この効果は、相手が以前に協力した場合に最も顕著でした [16]。相手が以前に協力し、刺激が与えられなかった場合、決定比は0.74でしたが、刺激中は0.43に有意に低下しました [16]。

対照的に、相手が以前に裏切った場合、刺激はサル現在の決定に影響を与えませんでした [16]。

さらに、相互に正の成果が不可能ゼロサムゲームでは、刺激はサル選択に影響を与えませんでした [37-39]。

これらの結果から、dACCへの刺激は、**最近肯定的相互作用の組み込みを特異的に抑制し、その結果、相互利益のある相互作用が減少した**と結論付けられます [37, 39]。

###考察と意義

研究は、神経科学における長年の目標であった「他者の隠された意図や『心の状態』を反映するニューロン」を発見しました [40]。これらの「**他者予測ニューロン**」は、dACCのタスク応答性集団3分の1以上を占め、自己現在選択符号化する細胞よりも優位に存在していました [40]。注目すべきは、これらのニューロンが**社会的文脈に強く敏感であり、自己決定や期待報酬によって変調されない**ことです [40]。

この予測信号は、既知の観察可能な行動(ミラーニューロン)や観察された報酬を反映する既存の報告とは根本的に異なります [41]。本研究で報告された予測ニューロンは、**本質的に観察不可能で未知である他者差し迫った決定や意図表現します** [41]。iPDゲームを用いることで、自己他者の決定に関する神経信号報酬結果から分離し、相互利益のある相互作用に特に関連する計算を調べることが可能になりました [42]。

生理学的所見と一致して、dACCの活動を混乱させる刺激は、サルの協力の可能性を減少させ、特に相手が以前に協力した場合に顕著でした [39]。これは、dACCが**相互作用の最近履歴に基づいた相互利益のある決定を特異的に仲介する**ことを示しています [39]。

研究の知見は、dACCが環境の動的モデル符号化するという既存役割を支持しつつ、**他者の未知の行動の明示的な表現必要とする相互作用にまで拡張する**ものです [43]。dACCに見られる自己符号化するニューロン他者予測するニューロンの2つの異なるグループは、デルタ学習アクター・クリティックの枠組みに類似した方法で、相手の実際の決定と行動中のサルの既知の決定に基づいて、共同決定の内部モデル更新するのに適している可能性があります [43]。

dACCは、社会的誘導された相互作用の側面を符号化する領域との広範な解剖学的結合を持つ「社会脳」の一部であると考えられます [43]。その活動破壊が協力行動を著しく低下させたことは、dACCの活動個体間の建設的な相互作用や社会学習必要である可能性を示唆しています [43]。この発見は、**他者意図や心の状態予測し、それを自身の行動に組み込むことが著しく影響を受ける自閉症スペクトラム障害反社会的行動を持つ個人治療への道を開くかもしれません** [43]。

Permalink |記事への反応(0) | 16:15

このエントリーをはてなブックマークに追加ツイートシェア

記事への反応 -

記事への反応(ブックマークコメント)

全てのコメントを見る

人気エントリ

注目エントリ

ログインユーザー登録
ようこそ ゲスト さん
Copyright (C) 2001-2025 hatena. All Rights Reserved.

[8]ページ先頭

©2009-2025 Movatter.jp