現代の理論物理学では、「位相的」と名の付く理論は、物理系のダイナミクスや局所的な振る舞いよりも、背景となる空間の形(トポロジー)そのものに注目します。
これらの理論は、計量(距離や角度などの幾何学的情報)に依存せず、空間の切り貼り(境界の接合や分解)を通じた情報や不変量を扱います。
TQFTは、数学的に「ボルディズム圏」と呼ばれる空間の切り貼りの構造と、そこから割り当てられる線形空間(ヒルベルト空間や有限次元のベクトル空間)との間の関手として定式化されます。
この理論の特徴は、物理的な「動き」や「時間発展」ではなく、空間のトポロジーに基づいた不変量を計算する点にあります。つまり、たとえばある閉じた多様体に対するTQFTの配分関数は、その空間の「形」が変わっても変わらず、純粋にトポロジカルな情報を反映します。
位相的弦理論は、通常の弦理論を特定の方法で「ツイスト」して、物理的な局所自由度(例えば振動モードの詳細な数値やエネルギー)よりも、世界面やターゲット空間のトポロジーに注目する理論です。
具体的には、2種類のモデル(AモデルとBモデル)に分かれ、Aモデルは主に対象空間のシンプレクティック構造から、Bモデルは複素構造の変形から不変量を抽出します。
これらの結果は、例えば曲線の数え上げやホモロジーの変化といった、幾何学的な不変量として現れ、またTQFTの枠組みと密接に結びついています。
位相的M理論は、通常のM理論の位相的側面を抽出したものとして考えられています。
M理論自体は11次元で記述される統一理論の候補ですが、位相的M理論はその中で、空間の局所的な計量情報を無視し、むしろ全体のトポロジーや膜の振る舞い(特にG₂ホロノミーを持つ7次元多様体など)に注目します。
この理論は、位相的弦理論のより高次元版とも捉えられ、例えば6次元空間に対するサークルバンドルを通じて、2次元の弦理論に還元できると予想されています。